R SCCE

A SOLECTRON SUBSIDIARY

SolarisVM Ebus Driver

Programmer’s Guide

P/N 204936 Edition 9.0
January 2000

Force Computers GmbH
All Rights Reserved

This document shall not be duplicated, nor its contents used
for any purpose, unless written permission has been granted.

Copyright by Force Computers

PN

R XLE

A SOLECTRON SUBSIDIARY

PUTERS

dr
b
z
World Wide Web: www.forcecomputers.com
24-hour access to on-line manuals, driver updates, and application notes

isprovided via SMART, our SolutionsPLUS customer support program
that provides current technical and services information.

Headquarters

The Americas Europe Asia

Force Computers Inc. Force Computers GmbH
5799 Fontanoso Way Prof.-Messerschmitt-Str. 1
San Jose, CA 95138-1015 D-85579 Neubiberg/Munchen

U.SA. Germany

Force Computers Japan KK
Shiba Daimon MF Building 4F
2-1-16 Shiba Daimon
Minato-ku, Tokyo 105-0012
Japan

Tel.: +1 (408) 369-6000
Fax: +1 (408) 371-3382
Email support@fci.com

Tel.: +49 (89) 608 14-0
Fax: +49 (89) 609 77 93
Email support@force.de

NOTE

Tel.: +81 (03) 3437 3948
Fax: +81 (03) 3437 3968
Email smiyagawa@fci.com

Theinformation in this document has been carefully checked and is believed to be entirely reliable. Force Computers makes no warranty of any kind with regard
to the material in this document, and assumes no responsibility for any errors which may appear in this document. Force Computers reserves the right to make
changes without notice to this, or any of its products, to improve reliability, performance, or design.

Force Computers assumes no responsibility for the use of any circuitry other than circuitry which is part of a product of Force Computers GmbH. Force
Computers does not convey to the purchaser of the product described herein any license under the patent rights of Force Computers GmbH nor the rights of
others. All product names as mentioned herein are the trademarks or registered trademarks of their respective companies.

Contents

Table of Contents

Using ThisManual e e vii
1 SaAfEly NOES . ..o 1
2 INtrOTUCTION . .. 5
21 Softwarelnterface Features.ot 8
2.2 Comparingthe Old-Styletothe New-StyleDriver cooiiii... 9
2.2.1 VITE_ XXX() FUNCLIONS e e et e e e 9
222 DeviceNaMES 10
2.2.3 1 Yo S () 10
2.3 EXAMPIES . 14
3 Installation and Configuration Guide i 15
31 Configuration e e e e 17
3.2 BasicTest Of the Driver i e e e 22
3.3 Troubleshooting 23
34 LIMItatioNS . . .o e 25
4 Application Programmer's GUIdE 27
A VIBPI US e 28
41.1 0PEN(), ClOSE() .+« oot e e 31
412 read(), Write()o e 32
4.1.3 MMaP(), MUNMBP() .« . oottt e 34
414 oo 1 36
415 wvui_intr_ena(), vui_intr_dis() 37
4.1.6 VUL TN oot e e e e e e e e 39
4.1.7 vui_transfer_mode set(), vui_transfer mode get() 40
A2 VITBAIMB . e e 43

ssssssssssssssssssss

Solaris VM Ebus Driver Pagei

Contents

4.3

4.4

4.5

42.1 OPEN(), ClOSE() v v e vt 44
422 read(), WHte() . .. oo 44
4.2.3 OCH () .« o et e e 46
424 vui_dma malloc() ... e 47
VBT B 49
431 0PEN(), ClOSE() . v v vt 50
432 read(), WHte()o e 51
4.3.3 MMapP(), MUNMEP() « . vttt e et 53
434 oo 1 54
435 vui_fdma malloc(), vui_fdma free() 55
VITBAV I B ottt e 58
44.1 0PEN(), ClOSE() .« . v vt e e 59
442 read(), Wrte()o e 60
443 MMaP(), MUNMEP() . . . oo e ettt e 61
444 oo 1 62
445 vui_Save map(), vui_save unmap() 63
VI B O | 68
45.1 0PEN(), ClOSE() .« v oo v et e 68
4.5.2 oo 1 69
453 vui_abort_signal(), vui_abort_wait() 70
454 vui_acfal_signal(), vui_acfail_wait()ccoiiiiii 72
455 vui_arb_mode set(), vui_arb mode get() i, 74
45.6 VUL Doard()o e 75
45.7 vui_bus rel_mode set(), vui_bus rel mode get() 76
458 vui_bus req level_set(), vui_bus req level _get() 77
459 vui_bus req mode set(), vui_bus req mode get()t 79
4510 VUI_INErface() . ..o oot 80
4511 wvui_intr_generate() e 81
4512 vui_mbox info() e 83
4513 vui_mbox_set(), vui_mbox remove() 84
4514 vUI_MBOX_Wait() . ..ot 87
4515 vUi_mBOX_CONLrol() . . . oo o vt e 88
4516 vui_reg base set(),vui_reg base get() i 89

Pageii

Solaris VM Ebus Driver T §[E

ssssssssssssssssssss

uary 2000

204936 9 - 0 Jan

Contents

4517 vui_reg read(), vui_reg Write()t 91
A5.18 VU TeSB() « ot it it 93
4519 wvui_sysfall_assert(), vui_sysfail deassert() 94
4520 wvui_(n)sysfail_wait(), vui_(n)sysfail_signal() 95
4521 wvui_error_info() 96
Device Driver Developer's Guide
5.1 VME Nexus Driver Configuration
511 Master Window Properties 99
512 Slave Window Property e 103
5.2 Device Driver Properties
521 Non-Vectored Interrupter Handling oot 104
522 VMEDUSMAEPPINGS . .. oottt e e e 105
5.3 NexusDriver Fault Handling
5.4 VDI FUNCHONS . .. e 108. .
54.1 Caling VDI functions e e e 109
54.2 vdi_arb_mode set(), vdi_arb mode get() 109
54.3 vdi_attach 111
544 vdi_brel_set(),vdi_brel_get() 112
545 vdi_breq set(),vdi_breq get()c. 113
5.4.6 vdi_brl_set(),vdi_brl get() 114
5.4.7 vdi_dma start() ... e 115
54.8 vdi_dmac dloc handle()cc i 120
549 vdi_eror_info() 121
54.10 vdi_event_setup(), vdi_event_release() 122
5411 vdi_info() ... 125
54.12 vdi_intr_acknowledge()c i e 130
5413 wvdi_intr generate() i 132
5414 vdi_map(), vdi_unmap() 132
54.15 vdi_map_abs(), vdi_map regspec() 134
54.16 vdi_mbox_attach(), vdi_mbox_detach() 136
5.4.17 vdi_mbox_enable(), vdi_mbox_disable() L, 141
54.18 vdi_mbox getinfo() 141

ﬁiEE Solaris VM Ebus Driver Pageiii

Contents

5.4.19 vdi_mbox_iblock_cookig(), vdi_mbox_hilevel() 143
5420 vdi_reg read(), vdi_reg write() 144
54.21 vdi_regslave set(),vdi regdave get() ... 145
5422 VA ImMW() .. 147
5423 VOI_IQ SPACE . ..ot 148
54.24 vdi_smem_alloc(), vdi_smem_free() 148
5425 vdi_smem_map(), vdi_smem_unmap()t 149
5426 wvdi_smem enable() 154
5.4.27 vdi_transfer_set(), vdi_transfer get() L 154
5.4.28 vdi_virqg_trigger(), vdi_virg ackwait() 156

VM E BUS PropertiesS . ..ot 159

6.1 Address Spaces YME_BT_Axxand VME_BT CRCSR 160

6.2 DataModes VIVE_ BT _DXX . .. ov ittt e e e 161

6.3 Miscellaneous Bus Properties 162

SYSIEM MESSaAgESot ti e aaa 165

7.1 PaniC MESSAgESottt 165. ..

7.2 WaAIMINGS . o oottt e e 166

7.3 NOUCES .. e 168

Product Error Report

=

Pageiv Solaris VM Ebus Driver ﬁi[E

A SOLECTRON SUBS|

Tablesand Figures

List of Tablesand Figures

Page Tab./Fig.
History of manual editions. i e Xi Tab. a
Fonts, notationsand conventions.o ittt e Xiv Tab. b
Architecture of the Solaris VMEbus Driver package. 5 Fig 1
Sampledeviceaccesshierarchy 6 Fig. 2
Changed device namesfor bl ock and mbl ock devices................... 10 Tab. 1
i oct| () support by thenew-styledriver it 11 Tab. 2
Relating old-style to new-styledriveri oct | () requests 13 Tab. 3
Mailbox Control Operationsttt 88 Tab. 4
Datawidthencoding. 105 Tab. 5
Overview of VDI functions e e 108 Tab. 6
Arbitrationmodes. 110 Tab. 7
Busreleasemodeso 112 Tab. 8
BUSIeqUEeSt MOOESt e 113 Tab. 9
VMEDUS BVENES . ..o e 123 Tab. 10
vdi _snmemreqstructmembers. 150 Tab. 11
vdi _snmem |imstructmembers............ ... 152 Tab. 12
Ri[ﬁ SolarisVMEDbus Driver Pagev

Tablesand Figures

Page

Tab./Fig.

Page vi

Solaris VM Ebus Driver

A SOLECTRON SUBSIDIARY

204936 9 — 0 January 2000

Using ThisManual

Using This Manual

This section does not provide information on the product but on common
features of the manual itself:

its structure
special layout conventions

and related documents

Audience of the Manual

This Programmer’s Guidas intended for software developers writing
applications and drivers for VMEbus hardware under Solaris x running
on a Force Computers CPU.

* The standard UNIX system calls and the VUI will be of importance
to application programmers and are primarily covered in section 4
“Application Programmer’s Guide” on page 27,

» whereas the DDI and VDI are important to VMEbus leaf driver devel-
opers who will be called device driver developers in this user’s man-
ual. The DDI and VDI interfaces are primarily covered in section 5
“Device Driver Developer’s Guide” on page 99.

Throughout this manual it is assumed that you are generally familiar with
Solaris x and have a working knowledge of Solaris x device drivers and
VMEDbus device drivers, in particular. Since this manual refers to the fol-
lowing documents, it is recommended that you have them available to
consult (e.g. vidat t p: / / docs. sun. com):

» Solaris x Driver Developer AnswerBook
» Solaris x Software Developer AnswerBook
» Solaris x Writing Device Drivers

e Solaris x DDI and DKI Kernel Functions

Note: This Programmer’'s Guide describes the standard Solaris
VMEDbus Driver package. Note that the Release Notesof the
respective version of the Solaris VM Ebus Driver describe hardware
and softwar e dependencies as well as limitations which may apply to

a specific CPU board for therelease under consideration.

To understand a CPU board’s VMEbus behavior the technical
reference manual of the CPU board’'s VMEDbus interface chip (e.g.
the FGA-5000) and of the CPU board itself (e.g. the SPARC/CPU-
20VT) are recommended.

A SOLECTRON SUBSIDIARY

ﬁﬁ[E Solaris VM Ebus Driver Page vii

Using ThisManual

Overview of the Manual

This Programmer’s Guidegrovides a comprehensive software guide to
the Force Computers VMEDbus driver suite.

Note: Please take a moment to examine the “Table of Contents” to
see how this documentation is structured. This will be of value to you
when looking for information in the future.

It includes

* an overview of the safety notes: see section 1 “Safety Notes” on
page 1

» a brief overview of the product and of changes as compared to old-
style VMEDbus drivers: see section 2 “Introduction” on page 5

» the installation instructions for the driver suite: see section 3 “Instal-
lation and Configuration Guide” on page 15. It includes the default
configuration and initialization.

» adetailed description for user application programmers: see section 4
“Application Programmer’s Guide” on page 27

* a detailed description for device driver developers: see section 5
“Device Driver Developer’s Guide” on page 99

» adescription of the extended bustypes concept — called bus properties
—and the bus properties defined: see section 6 “VME Bus Properties”
on page 159

» adescription of the system messages and possible causes to them: see
section 7 “System Messages” on page 165

204936 9 — 0 January 2000

Page viii Solaris VM Ebus Driver K XCE

A SOLECTRON SUBSIDIARY

Using ThisManual

2eVME
AM
AS
BBSY
BCLR
Bit
BLT
BRL
BRM
BREL
DMA
DVMA
DMAC

FDMA

IACK

IRQ

Mailbox

MBLT

Bustype

Glossary

The following terminology is used throughout this manual:

2 edge VME

Address modifier

Address space

Bus busy signal

Bus clear

A bit is either “set” (bit = 1) or cleared (bit = 0).

VME block transfer (32 Bit)

Bus request level

Bus request mode

Bus release modélRAT, O ROC,0 ROR, RWD)

Direct memory access

Direct virtual memory access

DMA controller

Fast direct memory access: when writing of fast DMA, the software
method to increase the actual transfer speed is meant. It is not a hardware
feature.

Interrupt acknowledge

Interrupt request

An address location on the VMEbus which triggers a local interrupt when
accessed.

VME multiplexed block transfer (64 Bit)
This is a set of properties which describes the way in which the VMEbus

is accessed, i.e. the address and data modes, the transfer mode and other
special conditions like write posting, data pre-fetch, etc.

K LE Solaris VM Ebus Driver Page ix

A SOLECTRON SUBSIDIARY

Using ThisManual

Loca bus

Pfn

PRI
PRIRR
RMW
RAT
ROC
ROR

RORA

RR

RSW

RWD

Semaphore

UAT

VDI

VUI

The 1/0O bus of the system to which the VME interface is attached (e.g.
SBusor PCI bus).

Page frame number. A physical on-board address divided by the MMU
page size.

Prioritized (arbiter mode)

Prioritized round robin (arbiter mode)

Read-Modify-Write cycle

Release on time-out

Release on [BCLR

Release on request

Release on Register Accesses Interrupters (RORA): When a VMEbus
interrupt request has been recognized, the CPU performs awrite access to
a control register in the interrupting device. In turn, the interrupting de-
vice removes its interrupt request.

Round robin (arbiter mode)

Register slave window: Thisis a special slave window which enables ac-
cess to the VME interface registers from VMEbus side.

Release when done

A VME slave address provided by the local VME board which can be
read and set in one atomic operation.

Single level (arbiter mode)
Unaligned transfer

VMEDbus driver interface: This is one of the 2 parts of the interface be-
tween the VMEDbus nexus driver and the VMEbus leaf drivers. The other
oneisthe standard Solaris DDI. All functions starting withvdi _ are col-
lectively called VDI functions.

VME user application interface: Thisis one of the 2 parts of the interface
between a user application and the VMEDbus leaf drivers. The other one
are standard UNIX system calls. All functions starting with vui _ are
collectively called VUI functions.

Page x

Solaris VM Ebus Driver ﬁﬁ[E

A SOLECTRON SUBSIDIARY

204936 9 — 0 January 2000

Using ThisManual

Publication History of the Manual

Tablea History of manual editions
Ed. Date Description
1 July 1996 First print
2 August 1996 Added description of fast DMA driver viref drma and
VUi _reg_base_set/ ~get
3 October 1996 Added bustypes, message, and vui _nbox_i nf o() descriptions
4 June 1997 Started delivery of this manua edition with software release 2.1

Added new bus properties (former term: bus type8JE_BT ..
..._PAMCL1.._PAMC2..._CRCSR.._A40

Support of all VMEbus AM codes.

Support of new devices:vredna32te, vmefdnma32te,
viecr csr 16, vmecrcsr 32, viepanildl6, vimepanld32,
virepan2dl16, andvirepan2d32.

Enhanced fault handling: si gi nf o structure is passed to the

process where possible.
New configuration flagyme_event _war n.
New functions:

— vui _... andvdi_... error_info() ,

vdi_map... ... _abs() and..._regspec()

—vdi _intr_acknow edge() and..._generate()

— vdi_virg... ... _trigger() and ..._ackwait()
Programmable AM codes

Support for CR/CSR address space

VME shared memory can be allocated at fixed VME addresse
Thoroughly revised examples

Revised terminology: to avoid misunderstandings, the FOF
COMPUTERS’ extension of the bus type concept now uses
term “bus property” instead of “bus type”.

Revised description of ERRORS within function descriptions: ¢
the errors defined by the Solaris VMEbus Driver package
described in this manual, for all others the respective man pag
referenced.

|2}

RCE
5 the

Dnly
are
es are

) XCE Solaris VM Ebus Driver Page xi

A SOLECTRON SUBSIDIARY

Using ThisManual

Tablea History of manual editions
Ed. Date Description
5 March 1998 Started delivery of this manual edition with software release 2.3:

Revised the manual to also fit for UltraSPARC technology where

the SBus is replaced by the PCI bus as local bus

/ pl atform archl/ kernel /drv documented as additional

installation directory

VVE_BT_USER replaced byvME_BT_NPRV, butVMVE_BT_USER
is still available

Revised error values for VUI
Extended UNIX system calls femredvna driver

Added SMEM DONTMAP flag for wvui_sl ave_map(),
..._unmap() forvmedvna driver

Revised examples

i octl nmbox_info_t structure instead of oct| nbox t
for vui _nbox_i nfo()

New functions:

— vdi_dmac_alloc_handle()

— vdi _nbox_i bl ock_cooki e(),vdi _nbox_hi |l evel ()
— vui _nsysfail_wait(),~signal ().

Updated description of mailbox interrupt levels

Revisedvimewi n andvirewi nX syntax which control master win
dow allocation

Added configuration option of themect!| driver to control
ACFAIL and SYSFAIL handling related to the function groups

— vui _acfail _wait(),~signal ()
— andvui _(n)sysfail _wait(),~signal ().
Added flagl MV CALLBACK forvdi _event _setup().

Page xii

Solaris VM Ebus Driver ﬁﬁ[E

A SOLECTRON SUBSIDIARY

204936 9 — 0 January 2000

Using ThisManual

Tablea

History of manual editions

Ed.

Date

Description

6.0

December 1998

Started delivery of this manua edition with software release 2.4:

New VDI functions:

— vdi_attach()

— vdi_reg_space()

New VUI function:

— vui_mbox_control()

Updated interface description for
— vui_mbox_set()

— vui_mbox_wait()

— vui_arb_mode_set()

Updated the description for vmedvma driver regarding the new
tures for mapping shared memory buffers to several processe

Updated description ofiev entries forvnepl us, viredma and
viref dma drivers.

Updated configuration section of vmeplus driver regarding
option to generate fixed-width VME accesses.

7.0

October 1999

Changed syntawadfi _i nf o()
Removed return values fodi _success
Added section “safety notes”

Editorial changes

8.0

November 1999

Editorial changes

9.0

January 2000

Changed manual type from Instruction Set to Programmer’s

fea-

192}

the

Guide

ﬁﬁ[E Solaris VM Ebus Driver Page xiii

A SOLECTRON SUBSIDIARY

Using ThisManual

Fonts, Notations and Conventions

Tableb Fonts, notations and conventions

Notation Description

0000. 000016 | Typical notation for hexadecimal numbers (digits are
0 through F), e.g. used for addresses and offsets.
Note the dot marking the 4th (to its right) and 5th (to

its left) digit.
0000g Same for octal numbers (digits are 0 through 7)
0000, Same for binary numbers (digits are 0 and 1)
Program Typical character format used for names, values, |and

the like that should be used typing literally the same
word. Also used for on-screen-output.

Variable Typical character format for words that represent a
part of a command, a programming statement, or the
like and that will be replaced by an applicable value
when actually applied.

..setaflag...| means: set the flagito

..Clearaflag... means: set the flagito

Iconsfor Ease of Use: Safety Notesand Tips& Tricks

Thefollowing 3 types of safety notes appear in thismanual. Be sureto al-
ways read and follow the safety notes of a section first — before acting as
documented in the other parts of the section.

Danger Danger ous situation: serious injuries to people or severe damage to
objects.
Caution Possibly dangerous situation: slight injuries to people or damage to

objects possible.

Note: No danger encountered. Pay attention to important
information marked using thislayout.

204936 9 — 0 January 2000

Page xiv Solaris VM Ebus Driver K XCE

A SOLECTRON SUBSIDIARY

Safety Notes

1

Safety Notes

General

Application
Pro-
gramming

This section provides safety precautions to follow when using the So-
laris VM Ebus Driver. For your protection, follow all warnings and
instructionsfound in the following text.

ThisProgrammer’s Guideprovides the necessary infor mation to han-
dlethe SolarisVMEbus Driver. Asthe product is complex and its us-
age manifold, we do not guarantee that the given information is
complete. In case you need additional information, ask your Force
Computersrepresentative.

The handling capabilitiesfor VM Ebuswrite errorsdiffer significant-
ly depending on the type of hardwar e ar chitecture used. The default
reaction istherefore very conservative. Refer to the Release NoteRor
information on whether the behavior can be modified for the hard-
wareunder consideration.

Some VME leaf drivers may not be loaded on hardware that lacks
the corresponding hardwar e features. For example, thevnmedma and
vief dma drivers cannot be installed on $4 based boards, since the
4 SBusto-VME bridge hasno DMA controller.

It isnot possibleto set thetransfer modesfor individual device nodes
or processes. At the moment when the transfer mode is set up, it is
valid for the whole driver instance. For the vnepl us driver this
means the following: if the transfer mode is set up for example for
[dev/ vnme32d32, it is valid for all / dev/ vimrexxdyy devices and
for all other processes using these devices. However, existing map-
pingswill not be affected.

Some hardware needs properly aligned buffer and/or VMEbus ad-
dresses (refer to the Release Note# thisis true for the CPU board
you use). To allocate the DM A buffer, it is recommended to use the
VUI function vui _dma_mal | oc() which allocates properly
aligned memory. For VMEbus addresses, it is safe to use page-
aligned start addresses and sizes.

Depending on the system architecture, Solaris might not give the al-
located memory back for normal use. Refer to the Release Notefor
further information on allocating shared and DMA memory for the
CPU board under consideration.

uuuuuuuuu

ﬁiEE SolarisVMEbus Driver Page 1

ssssssssss

Device
Driver

Beforeit ispossibletoread or write DMA memory via thevimef dna
driver, it is necessary to allocate an /O buffer via
vui _fdma_nmal | oc(). Use the resulting i oaddr returned by
vui _fdma_mal | oc() asbuf argument for read() or wite()
accesses.

Never changethevmedvma configuration file.

The generation of interrupts is hardware dependent. Therefore, re-
fer to the Release Noteswhether thisfeatureissupported on the CPU
board under consider ation.

Enabling or disabling the SYSRESET output and input signal is
switch-selectable. Therefore, check the CPU board’s switch setting to
ensure proper operation.

It may be that error events are dropped when using the flag

VME_SLEEP. This is the case when an error occurs in the time be-
tween issuing one of the above function calls and actually waiting for
an error event. To prevent such problems, the application program-

mer should set a timeout which interrupts the wait state from time to

time and then check the error counters.

When changing a value for a programmable AM code ivME. conf
the virepl us. conf has to be updated as well so that the bus prop-
erty for the correspondingr eg property reflects the new value in the
VME. conf file.

The VME_BT_PAMC1 and VME_BT_PAMC2 bus properties do not de-
fine the address space size, which means thaVE_BT_PAMCx bus
property literal must always be used in combination with a bus prop-
erty specifying an address space/{VE_BT_Axx).

The VME nexus driver does not attempt to perform an IACK cycle
itself for interrupt levels at which such a non-vectored ISR is in-
stalled. However, hardware may require this. Therefore, the device
driver developer must usevdi _i ntr _acknow edge() to obtain
the interrupt vector, even if the vector is not used.

It is recommended to set thd MM_CALLBACK flag, because there is
no other way to request the current status of the ACFAIL and SYS-
FAIL lines.

Page 2

SolarisVMEbus Driver

204936 9 — 0 January 2000

Safety Notes

Asof SolarisVMEbusDriver release 2.1 thevdi _nap_abs() func-
tion is supported. It is strongly recommended to use
vdi _map_abs(),instead of vdi _map() .

Depending on the hardware architecture, shared memory might be
allocated non-cached. Once non-cached memory has been allocated
by vdi _snmem al | oc(), it may no longer be available for normal
use by the virtual memory system. This is because Solaris removes
memory from thefreelist onceit has been set to non-cached. Howev-
er, thememory will bere-used for future save memory requests.

Solaris VM Ebus Driver Page 3

Page 4

SolarisVMEbus Driver

ssssssssssssssssssss

204936 9 — 0 January 2000

Introduction

2 Introduction

The Solaris VMEbus Driver package is a Solaris software extension to
provide access to VMEDbus devices for device drivers and user applica
tions. It isintended for Solaris 2.5 or higher.

It logically consists of 2 main parts allowing for hardware and software

independence:
Leaf drivers, » the (VMEbus, SBus, PCI) leaf drivers: The term leaf driver refers to a
devicedrivers device driver that accesses logically or physically existent devices on

an I/0 bus, and implements the functions defined for the device, such
as transferring data to or from the device or accessing device regis-
ters.

There are several leaf drivers available in the Solaris VMEbus Driver
package, providing an application interface to the various functions
of the VMEDbus bridge (like VMEbus master accesses, VMEbus slave
windows, operating the DMA controller, etc.). The Force Computers
leaf drivers are shipped as binaries and source code, so they can be
used as sample leaf drivers and extended on demand.

The following leaf drivers are included in the Solaris VMEbus Driver
packagevnepl us, vhect | , viredng, vief dima, andvedvma.

In this manual these leaf drivers are meant when writing about leaf
drivers in general.

VMEDbus nexus ¢ the VMEbus nexus driver: a nexus driver is a bus driver which inter-

driver faces leaf drivers to a specific I/O bus. The VMEDbus nexus driver pro-
vides the low-level kernel integration of the VMEbus. It supports
customer-specific VMEDbus leaf drivers developed using the Solaris
VMEbus Driver package. E.g., it implements auto-configuration,
interrupt handling and memory mapping.

In this manual the VME nexus driver is meant when writing about
nexus drivers in general.

Figurel Architecture of the Solaris VM Ebus Driver package

User application

UNIX system calls VUl
VME user interface

VMEbus |leaf drivers

DDI VDI
(device driver interface) (VME driver interface)

VMEDbus nexus driver

VMEbus Bridge Hardware

ﬁiEE Solaris VM Ebus Driver Page 5

sssssssssssssssssss

Introduction

Access hierarchy

Figure2

VMEDbus leaf
drivers

— system calls

The VMEbus nexus driver provides the bus driver for the VMEbus which

is used to access a VMEbus device. The device-specific VMEbus |eaf

driver handles the device itself. The following figure schematically
shows the access hierarchy: if a device is accessed, the device’s leaf driv-
er (dev2) calls the respective bus driver (VME) which may well call an-
other bus driver (SBus), as is the case for the dev2 device in the figure
shown.

Example

When dev2 is accessed, the dev2 leaf driver is called to do the access.
For this purpose, it calls the nexus driver for the SBus-to-VMEbus
bridge which then itself calls another nexus driver — the one for the
SBus bridge, and so on.

Sample device access hierarchy

Hardware Drivers

CPU

(CPU)

SBus nexus driver
for SBus bridge

| \

SBus-to-VMEbus VME nexus driver
bridge for SBus-to-
VMEbus bridge

/7 \

VME leaf VME leaf
driver for driver for
dev2 dev3

SBus bridge

SBus

VMEbus

SBus leaf
driver for
devl

devl dev2 dev3

In more detail, every device-specific VMEbus leaf driver sets up the de-
vice registers necessary for a particular function and supplies routines to
establish mappings, transfer data, handle interrupts, access the device’s
registers and other device-specific routines.

The routines provide user applications with the access to the VMEbus
functions via device nodes which are special files irf thev directory:

» either by the use of standard UNIX system calls sumbeag) ,
read(),wite(),mmap(), etc. Called for VMEbus devices these
system calls allow for data transfers to and from the VMEDbus devices.

204936 9 — 0 January 2000

Page 6

SolarisVMEbus Driver F\/%[E

Introduction

- VUI » or by calling many other VMEDbus specific functions which are pro-
vided by the VUI, the standard Force Computers VME user interface.
The VUI provides, for example, functions waiting for external events
or disabling the receipt of interrupts.

The functionality of the VMEDbus leaf drivers and of the VUI depends on
the VMEbus nexus driver and its interfaces. Only the functions supported
by these interfaces also are supported by the VMEbus leaf driver and via
the VUL.

There are different leaf drivers for different accesses and functions avail-
able. Each leaf driver supports his own list of devices:

» vnepl us replaces Sun'ynmenem driver, it contains all the code
necessary to access VMEbus memory. Furthermore, it provides a
functionality to handle VMEbus interrupts and forward them as sig-
nal to the calling processnepl us is a standard character device
driver. The driver provides access to the deviatsv/ virexxdyy

e vmect!| provides various control functions to program the VMEbus
bridge device. Furthermore, it supports handling of various Hardware
signals likeabort, sysfail, oracfail. The driver provides
access to the devidalev/ vnect | .

* vnedma utilizes on-board VME DMA controller (DMAC), it con-
tains all the code necessary to initiate a transfer from user space to
VMEbus memory and vice versa. The driver provides access to the
/ dev/ viredma... devices.

+ vnef dma (the fast DMA driver) has basically the same functionality
asviredna. By reducing the software overhead for initiating a trans-
fer it may be significantly faster thamedma, with the disadvantage
of a software interface which is not as flexible and convenient. The
driver provides access to the devitelev/ viref dma...

» vmedvna allows a process to allocate and map on-board memory so
that it can be accessed both from the VMEbus and processes running
locally. The driver provides access to the deviadsv/ viredva...

VM EDbus nexus Just as with the VMEDbus leaf drivers, the nexus driver provides 2 inter-
driver faces for the on-top software layer (which are VMEbus leaf drivers), the
DDI and the VDI:

» The standard Solaris DDI (device driver interface) is described in the
Solaris DDI documentation. It only provides a small segment out of
the full range of VME functions.

» The Force Computers specific VDI (VME driver interface) enhances
the DDI and provides, for example, DMA and VME control func-
tions.

< XCE Solaris VM Ebus Driver Page 7

ssssssssssssssssssss

Softwar e I nter face Features

Introduction

The VMEbus nexus driver and the VDI are operating system and hard-
ware dependent, but both aways provide the same interfaces to the
VMEbus leaf drivers.

2.1 Softwarelnterface Features

The following feature list may be limited due to hardware capabilities of
the CPU board on which the Solaris VMEDbus Driver package is installed.
The limitations are described in the packadEease Notes.

VME master Address modes Al6, A24, A32, CR/CSR, 2 programmable
accesses AM codes
Single transfer sizes D8, D16, D32
Other transfer modes BLT, MBLT, 2eVME
Access mode supervisory/non-privileged, program/data
RMW cycles
VME slave Address modes A16, A24, A32
AcCesses Single transfer sizes D8, D16, D32

Other transfer modes BLT, MBLT, 2eVME

Access mode supervisory/non-privileged, program/data

Slave memory
cess

Write posting enable/disable

Enable VME access to register set and set VME address

DMA controller

Queue and execute DMA controller requests

DMA buffer allocate and map to kernel
IRQsand signals | VMEbus IRQ(s) receive, trigger, forward as signal
SYSFAIL react on, assert, clear
ACFAIL, ABORT react on
SYSRESET trigger
VME requester | Bus request Levels 0...3, fair and demand mode
Bus release ROR, RWD, ROC, RAT
VME arbiter Arbitration mode Single level, round robin, priority, priority

round robin

Page 8

SolarisVMEbus Driver F\/%[E

allocate, map to VMEDbus, to kernel and to pro-

204936 9 — 0 January 2000

Introduction Comparing the Old-Style to the New-Style Driver

2.2

221

M ailboxes Mailbox access notification

Request/set addresses and VME access properties for Mailboxes

Miscellaneous Request CPU information (name, revision) and VME interface infor-
mation (name, type, interface bus, revision)

VMEDbus error information.

Comparing the Old-Style to the New-Style Driver

Notes for Thefollowing 2 changes should be noticed by application programmers:
application » one concerns the change of device names
programmers

» the other concerns the useiafct | () .

For more information on the new-style driver for application program-
mers see section 3 “Application Programmer’s Guide” on page 23.

Notes for device The following should be noticed by device driver developers:

driver developers , - there are no changes affecting the standard Solaris DDI.

» Changes have been made to the Force Computers specific interface
between the VMEbus nexus and the VMEbus leaf driver. This inter-
face is now called the VME Driver Interface — VDI. The changes
affect thevrre_xxx() functions.

» Thei oct| () requests have also been changed.
For more information on the new-style driver for device driver develop-
ers see section 4 “Device Driver Developer’s Guide” on page 105.

Notes related to The following list summarizes necessary changes to existing leaf drivers:
existing leaf

drivers Exclusively DDI-based leaf drivers run with the new-style driver

without change.

» Leaf drivers which use theme_xxx() functions have to use the
respectiverdi _xxx() functions, instead.

vire_xxx() Functions
Changes have been made to the 2 old-style driver functions named
vime_xxx() . They are no longer available:
 vme_dme_init() isno longer necessary

 and instead of using vme_dma_start () use
vdi _dnma_start ().

ﬁiEE Solaris VM Ebus Driver Page 9

sssssssssssss

\\\\\\

Comparing the Old-Style to the New-Style Driver Introduction

2.2.2 Device Names

Table1

2.2.3ioctl ()

Concerning functionality (not call syntax) the VDI provides a superset of
the old-style vime__xxx() functions. Addtionally, contrary to the old-
stylevime_xxx() functionsthe VDI is hardware independent.

The device namesfor bl ock and bl ock devices have changed.

Changed device namesfor bl ock and nbl ock devices

Old devices names New device names
/ dev/ vmredma24d32b / dev/ vredma24bl t
/ dev/ vmredma32d32b / dev/ vredma32bl t
/ dev/ vmednma24d32nb / dev/ vredma24nbl t
/ dev/ vmedma32d32nb / dev/ vredma32nbl t
/ dev/ f vmedma24d32b / dev/ vref dnma24bl t
/ dev/ f vimedma32d32b / dev/ vref dma32bl t
/ dev/ f vimedma24d32nbl t / dev/ vref dma24nbl t
/ dev/ f vmedma32d32nbl t / dev/ vref dma32nbl t

Both drivers, the old-style as well as the new-style driver support the
standard UNIX calls. Additionally the new-style driver supports the
VME User Interface — VUI. Within this interface there are several VUI
function calls which functionally replace the old-stylect | () . Never-
theless, oct | () is supported within the new style driver though it is
strongly recommended to use the VUI function calls instead of
ioctl ().

Thei octl () interface has been substantially revised to no longer be
CPU-board dependent. Moreover, it is no longer necessary to use
i octl () within an application because the VUI can be used instead,
providing a hardware-independent VMEDbus user interface.

Therefore:

» Applications which are based on the old-style driver and which do not
usei oct | () will run on the new-style driver as well. For blt and
mblt transfers only the device names has to be changed.

» Applications which useoct | () will

204936 9 — 0 January 2000

Page 10

Solaris VM Ebus Driver F\/%[E

I ntroduction

Comparing the Old-Style to the New-Style Driver

Table 2

— either — as in the past — have to adapt the calls to the new
ioctl()

— or — and this is the solution strongly recommended by Force Com-
puters (especially when developing new applications) — adapt them
to VUI functions.

Nevertheless, a list of all supportedct | () calls follows.

For the new-style driver this setiobct | () requests covers all support-

ed Force Computers CPU boards. The VME nexus driver decides wheth-
er thei oct | () request makes sense or not. If it does not work on the
CPU board under consideration, an error code is returned. But the set of
i octl () requests does not change. Thereby, only one driver package
covers all supported Force Computers CPU boards.

For a detailed description, see the equivalent VUI function and the
i octl () description of the respective leaf driver. For an example of
how to useioctl () have a look at the VUI source code in

[opt / FRCvne/ vui .

i octl () support by the new-styledriver

Leaf driver Supportedi oct ! ()

viepl us VVE_RWV
VME_TRANSFER_MODE_SET, ..._GET
VME_INTR_ENA, ..._DIS

vmedma VME_DMA_GET_STATUS
VME_DMA_INFO

vmefdma VME_FDMA_MAP, ... UNMAP
VME_DMA_GET_STATUS
VME_DMA_INFO

ﬁiEE Solaris VMEbus Driver Page 11

sssssssssssssssssss

Comparing the Old-Style to the New-Style Driver Introduction

Table?2

i octl () support by the new-styledriver (cont.)

Leaf driver Supportedi oct | ()

vimedvma VME_SLAVE_MAP, ..._UNMAP
VME_SLAVE_SET

vmectl VME_REG_READ, ..._WRITE

VME_REG_BASE_SET, ... GET
VME_ARB_MODE_SET, ..._GET
VME_BRL_SET, ..._GET
VME_BRM_SET, ... GET
VME_BREL_SET, ... GET
VME_INTR_GENERATE
VME_MBOX_SET, ... REMOVE
VME_MBOX_INFO
VME_MBOX_ENABLE, ... DISABLE
VME_MBOX_WAIT

VME_BOARD

VME_INTERFACE

VME_ABORT_INTR

VME_ACFAIL_INTR
VME_SYSFAIL_INTR
VME_SYSFAIL_ASSERT, ... DEASSERT
VME_RESET

Page 12

Solaris VM Ebus Driver F\/%[E

A SOLECTRON SUBSIDIARY

204936 9 — 0 January 2000

I ntroduction

Comparing the Old-Style to the New-Style Driver

Table 3

The following table shows the old-style i oct | () requests and the re-
spective new-style i oct | () requests. Note that the new-style driver
supports more i octl () requests than listed. For more information
about the i oct | () requests of the new-style driver see the respective
i octl () description of therelated leaf driver and the related VUI call.

Relating old-styleto new-styledriver i oct | () requests

i octl () old-style

ioctl () new-style

VME_MAP_SLAVE

VME_SLAVE_MAP

VME_UNVAP_SLAVE

VME_SLAVE_UNVAP

VME_SLAVE_SET_MAP

VME_SLAVE_SET

VME_SET_SLAVE W N
VME_SET_SLAVEW N

no longer necessary. Instead, the
new-style driver sets up the slave
window automatically.

VME_GET_SLAVE W N
VME_GET_SLAVEW N

no longer necessary

VME_GET_SLAVEWPERR

no longer available. To control
write posting errors, the new-style
driver can be configured via the
appropriate flag entry in
/etc/system (see section?2
“Installation and Configuratior

Guide” on page 11) and via the

VME_TRANSFER_MODE_SET
i octl () request.

VME_SET_REG
VME_SET_VSI A16BASE
VME_ENA VS| A16

VME_REG BASE_SET

VME_GET_REG
VME_GET_VSI A16BASE
VME_DI S_VSI A16

VME_REG BASE GET

VME_SET_VME W N

N

no longer necessary. Instead, the

new-style driver sets up the mas-

ter window automatically.

VME_GET_VME W N

no longer necessary.

SET_ABORT_PI D

VMVE_ABORT | NTR

VMVE_ASSERT_SYSFAI L

VME_SYSFAI L_ASSERT

VMVE_NEGATE_SYSFAI L

VMVE_SYSFAI L_DEASSERT

VME_SYSFAI L_STAT

not available.

VMVE_DI SWP

VME_TRANSFER MODE_SET

ﬁﬁEE SolarisVMEbus Driver

A SOLECTRON SUBSIDIARY

Page 13

Examples

Introduction

Table 3

2.3 Examples

Relating old-styleto new-styledriver i oct | () requests(cont.)

i octl () old-style

i octl () new-style

VMVE_ENAWP

VME_TRANSFER MODE_SET

VME_| NSTALL_MBOX

VME_MBOX_SET
VME_MBOX_ENABLE

VME_REMOVE_MBOX

VME_MBOX_DI SABLE
VME_MBOX_REMOVE

VVEMBOX_WAI T VMVE_MBOX_WAI T
VIVE_MBOXWAI T

VME_LED SET not available.
VME_LED GET not available.

The Solaris VMEbus Driver package includes examples for VME devic-

es. All examples are located in / opt / FRCvire/ exanpl es.

The di-

rectory includes a Makef i | e to compile the examples and a READVE
file providing detailed information for each example — including informa-

tion on further help provided.

Page 14

A SOLECTRON SUBSIDIARY

Solaris VM Ebus Driver

204936 9 — 0 January 2000

Installation and Configuration Guide

3 Installation and Configuration Guide

This section describes how to install the Solaris VMEbus Driver package
FRCve for use with the Force Computers SPARC-based CPU boards
running Solaris-x. Other packages of this product are installed anal ogous.

Overview and The name of the package is FRCvne. The standard installation path is
installation / opt . During installation the directory / opt / FRCvne is generated and
directories al drivers and driver configuration files are copied to / ker nel / drv

and/ pl at f or i ar ch/ ker nel / dr v and bound into the kernel. Fur-
thermore, the necessary header files and libraries (VUI-Library) are cop-
ied to the directories / usr/i ncl ude/ sys and /usr/|ib. After a
successful installation, the system has to be rebooted so that the VME
drivers are loaded.

Check whether Usepkgi nf o(1) to find out whether the driver isaready installed:

already installed
pkginfo -1 FRCvie
pkgi nf o issues an error message if the FRCvre driver is not installed.
If an older version of the FRCvire package is dready installed, it has to
be removed first and the system has to be rebooted before installing the
new version of the FRCv e package:
pkgrm FRCvie
shutdown -g0 -i6
Installing the Use pkgadd(1M) to install the driver. If you do not want to use the de-
package fault installation, see aso “Optional installation parameters” on page 16.
If you want to install the package for a diskless client, see also “Diskless
client” on page 16.
To install the driver the user must beot . The Solaris VMEbus Driver
is delivered on tape or CD-ROM.
Tape # pkgadd -d /dev/rnt/O0

ﬁﬁ[E Solaris VM Ebus Driver Page 15

A SOLECTRON SUBSIDIARY

Installation and Configuration Guide

CD-ROM

If you use a CD-ROM for installation, the following 2 cases can occur:

» The volume manager is running. In this case, the CD-ROM is
mounted automatically to the directdrgdr om

* The volume manager is not running. In this case, you have to mount
the CD-ROM first. As a mount point an already created empty direc-
tory can be used. For example, for a CD-ROM device with SCSI ID 6
(which is quite common) and mount poirtdr omenter:

mount -F HSFS -r /dev/dsk/cOt 6d0s0 /cdrom

CD-ROM with volume manager:

— not running

— running

Diskless client

— on the client’s
server

— on the client
itself

Optional
installation
parameters

mount -f hsfs -r /dev/dsk/<scsi-device> <mount - poi nt >
pkgadd -d <nount - poi nt >/ pkg

pkgadd -d /cdron pkg

If you want to install the package for a diskless client, you can either in-
stall it on the client’s server or on the client itself.

pkgadd -d /dev/rm /0 -R /export/root/<clientnane>

Before installation on a diskless client, check ghear e options on the
server host and themount options on the client host (server:

/ et c/ df s/ df st ab; client:/ et c/ vf st ab). Usually, the filesystems

are exported as read-only filesystems, but the client's root must be ex-
ported to allow superuser read/write accesses. For more information see
the Solaris user documentation.

It may be the case that some warnings are printed if the package is in-
stalled on a diskless client (ifusr is mounted read-only). These warn-
ings can be ignored safely (see next note).

It is possible to install only part of the files provided by the Solaris VME-
bus Driver package.

Example:

It may be required to install the Solaris VMEDbus Driver package with-
out loading and attaching the VMEbus drivers themselves (for exam-
ple, on a development system without VMEbus interface). This can be
accomplished by not installing the files which are planned to be stored
in/ kernel /drv and/ pl at f orni arch/ kernel / drv

204936 9 — 0 January 2000

Page 16

Solaris VM Ebus Driver F\/%[E

A SOLEGTRON SUBSIDIARY

Installation and Configuration Guide Configuration

The following steps describe how thisis actually done:

1. Choose the files to be installed by choosing a combination of the 3
classes the Solaris VMEDbus Driver is split up into:

— base denotes all files ih opt / FRCvie (this class is mandatory
and must not be omitted),

—targ denotes all files in/kernel/drv and /plat-
form archl/ kernel /drv (i.e. the VMEbus drivers to be
attached),

— sysfil e denotes all files ihusr /i ncl ude and/ usr/1ib.

2. Create a filé t np/ FRCve. cl asses which only includes a sin-
gle line naming all classes which you want to install, e.g.:

CLASSES="base sysfile”

This sample response file lists the classes base and sysfi | e but
omitst ar g so that the drivers will not be installed.

Note: Omitting the t ar g class will also suppress the verification
step that ensuresthat the driver package isinstalled on a supported
CPU board.

Note: It may be useful (but it isnot a requirement) to omit the class
sysfil e when installing on diskless clientswhere/ usr is mounted
read-only. Otherwise, pkgadd displays some war nings, which can be
safely ignored.

Non-interactive To install the driver package without being prompted for input it is re-

installation quired to create a response file and pass it as argument to the pkgadd
command. For further information refer to the documentation of pk-
gask and pkgadd.

3.1 Configuration

The default configuration supports al features of the Solaris VMEbus
Driver package. Therefore:

» The following section is intended for advanced users, only.

» The information provided in this section is only necessary to config-
ure the installed Solaris VMEbus Driver package when customizing
one of the delivered drivers or integrating a customized or a third
party leaf driver.

ﬁﬁ[E Solaris VMEbus Driver Page 17

A SOLECTRON SUBSIDIARY

Configuration Installation and Configuration Guide

» For all other users the installed Solaris VMEbus Driver package is
ready for use right after the installation has been finished.

Delivered drivers This driver package consists of
» 1 VMEbus nexus driver namadve, and

* 5VMEbus leaf drivers named/nmepl us, vmect!l, vredna,
viref dma, andvedvna.

For each driver there is a configuration file nanakd ver. conf in

/ kernel /drv or/platform archl/ kernel /drv, for example,

VME. conf orvnepl us. conf . A standard configuration file for each
driver is included in the package. The standard configuration file de-
scribes the name and the class of the driver. If necessary, it also describes
VMEDbus ranges and interrupts.

Example:

The VMEbus access properties for theepl us driver are config-
ured invirepl us. conf .

The standard configuration files have been designed to implement a fully
featured driver. If you want to change one of the configuration files, e.g.,
to include interrupts, see the respective man page and section 4 “Applica-
tion Programmer’s Guide” on page 27 for a detailed description of each
leaf driver’s configuration.

The configuration file of the VMEbus nexus driver (VME.conf) may be
empty. Nevertheless, the VMEbus nexus driver supports properties for
VME master ranges and VME slave ranges. If only the leaf drivers of the
Solaris VMEbus Driver package are used together with the VMEbus nex-
us driver, the configuration file can remain as is. If, however, the VME-
bus nexus driver is used with other leaf drivers, see section 5 “Device
Driver Developer's Guide” on page 99 for detailed information on the
configuration of the VMEbus nexus driver.

Tuning drivers The remaining part of this section describes variables which are impor-
tant to application programmers using leaf drivers.
Most variables specify a configuration detail of the VMEbus nexus driver
and thereby potentially affect all VMEbus leaf drivers (see “Access hier-
archy” on page 6). If a variable also refers to other drivers, it is explicitly
stated in the description of the variable given below (see for example
vire_sl ave_di swp_fl ag andvne_mast er _defaul t).

To set a variabl&ar i abl e, which refers to the drivadri ver, to the
valueval ue, insert the following line ir et ¢/ syst em(see also the
syst en(4) man page):

set driver: variabl e=val ue

204936 9 — 0 January 2000

Page 18 Solaris VM Ebus Driver F\/%[E

Installation and Configuration Guide Configuration

Example:

Settingvme_di swp_fl agandvre_mast er _defaul t:

set VME: vne_di swp_flag=1
set VME: vne_mast er _def aul t =0x08000000
set vnepl us: vhe_nast er _def aul t =0x08000000

vire_di swp_f | ag controlsthe status of global write posting for master access. If theflagis
cleared or not available, al drivers handle write posting for master ac-
cesses as defined elsewhere.

=1 Write posting is disabled for every driver for master windows. Enabling
write posting via other flags or VUI functionsis impossible.

vire_sl ave_di swp_f | ag controls the status of global write posting for slave window ac-
cess. It affectsvmedvna. If theflag is cleared or not available, all drivers
handle write posting for slave windows as defined el sewhere.

=1 Write posting is disabled for every driver for slave windows. Enabling
write posting via other flags or VUI functionsis impossible.

vire_mast er _def aul t setsthe transfer mode of master windows. For valid values and a
general discussion on VME AM code generation see

 vne_types. h header file,

» section 4.1.7 “vui_transfer_mode_set(), vui_transfer_mode_get()” on
page 40,

» and section 6 “VME Bus Properties” on page 159.

vire_mast er _def aul t can be used

» for the VME nexus driveVE), thereby affecting all VME leaf driv-
ers with the exception ofnmepl us. Sample/ et c/ syst ementry
for enabling write posting:

set VME: vne_mast er _def aul t =0x01000000

» for thevrepl us leaf driver, thereby only affectingmepl us. This
default setting may get overridden by software. Sarhetec/ sys-
t ementry for enabling write posting:

set vnepl us: vhe_nast er _def aul t =0x01000000

vimre_maperr _acti on defines how to react on a LocalBus-to-VME write-posted errors
which cannot be back tracked to the originating process or driver. For ex-
ample, this happens when write posting is enabled on the FGA-5000 and
a VMEbus access error occurs.
The following value list will be extended in future:

=0 Print warning only (default).
=1 Ignore LocalBus-to-VME posted write errors.
=2 Panic on LocalBus-to-VME posted write errors.

ﬁﬁ[E Solaris VMEbus Driver Page 19

SOLECTRON SUBSIDIARY

Configuration

Installation and Configuration Guide

vire_swperr _acti on defines how to react on a VME-to-LocalBus write-posted error

vime_uwerr _acti

vime_kwerr _acti

vire_faul t _hndl

=0
=1

vime_Kkrerr_acti

(VME-to-SBus errors cannot be back tracked to a process or driver):
Print warning only (default).

Ignore VME-to-LocalBus posted write errors.

Panic on VME-to-L ocalBus posted write errors.

on defines how to react on a non-posted user write error (for example,
when the VMEDbus is accessed viammap()).

Note: The handling capabilities for VMEbus write errors differ
significantly depending on the type of hardware architecture used.
The default reaction is therefore very conservative. Refer to the
Release Notes for information on whether the behavior can be
modified for the hardware under consideration.

When a user access occurs, print a warning and send the SIGBUS (bus
error) signal.

Ignore VM E-to-L ocal Bus non-posted user-write errors.
Send the SIGBUS (bus error) signal.

Panic.

Print awarning (default).

on defines how to react on a non-posted kernel write error.

Note: The handling capabilities for VMEbus write errors differ
significantly depending on the type of hardware architecture used.
The default reaction is therefore very conservative. Refer to the
Release Notes for information on whether the behavior can be
modified for the hardwar e under consideration.

Print awarning and send a SIGBUS (bus error) signal.
Ignore VME-to-L ocal Bus non-posted kernel write errors.
Send the SIGBUS (bus error) signal.

Panic.

Print awarning (default).

_of f controls whether the Solaris fault handling routines will not be
changed. This causes unpredictable results when VMEbus errors occur.

The Solaris fault handling routines may be changed (default).
The Solaris fault handling routines will not be changed.

on defines how to react on kernel read faults:

Page 20

Solaris VM Ebus Driver F\/%[E

204936 9 — 0 January 2000

Installation and Configuration Guide Configuration

vire_rerr_stall

=0

=1

copyout () reportsan error and other accesses cause a bus error signal
to the process (default).

Same as 0, additionally awarning is printed.

defines how to react on read errors. When a VM Ebus memory location
is read and a bus error occurs, the processor issues a synchronous (pre-
cise) trap. This activates the error recovery function of the VMEbus
nexus driver, which sends a SIGBUS signal to the offending process.
Dependingonvne_rerr _stal |, 2 continuations are possible:

This setting is only available on sun4m hardware architectures: Skip the
machine instruction and resume the process with the next instruction.
This results in the original read instruction returning data which seem to
be valid, athough the read transaction has actualy failed and the data
content is indetermined. When using this setting, the programmer should
also catch SIGBUS to correctly deal with data returned by the read oper-
ation although the transfer failed.

Restart the machine instruction which caused the precise trap (default).
This usually results in the VMEDbus accessing the address which caused
the bus error over and over again, i.e. the error recovery function does not
stop sending SIGBUS signals to the process.

vire_event _war n defines how to react on ACFAIL, SYSFAIL, and ABORT:

=0
=1

Do not print any warning (default).
Print awarning, if the corresponding event is not handled.

ﬁﬁ[E Solaris VMEbus Driver Page 21

A SOLECTRON SUBSIDIARY

Basic Test of the Driver Installation and Configuration Guide

3.2 Basic Test of theDriver

After successful installation the package’s program examples can be used
to access a slave board on the VMEbus. Ensure to have rebooted the sys-
tem after package installation.

Sample situation for the screen output shown in this section:

The following examples assume that there is a memory board at
VMEbus addres6000. 00004, accessible in the A32 address
range, which accepts 32-bit single transfers.

Filling memory 1. Use thesnmedmma driver to fill the first megabyte of the memory board
with O with 0.

cd /opt/ FRCvre/ exanpl es
vmecp -t -a 60000000 -s 100000 /dev/zero /dev/vmednma32d32
1048576 bytes in 0.08 real seconds = 12.31 MB/sec

Write access 2. Use tharepl us driver to write some data to the memory board.
vire_dunp takes data from standard input and writes it to the speci-
fied VMEbus address until CTRL-D is entered.

vme_dunp -w /dev/vnme32d32 60000000
This is a test
"D

Read access 3. Use thaepl us driver to read the data we just wrote to the mem-
ory board. In the example belo0,¢ (= 32,,) Byte are read.

vne_dunp -r /dev/vme32d32 60000000 20
This is a test

Read and storein 4. Use thevmedna driver to read 1 megabyte and store it in a file.
file

vmecp -t -a 60000000 -s 100000 /dev/vmedna32d32 /usr/tnp/data
1048576 bytes in 0.16 real seconds = 6.39 M3/ sec

cat /usr/tnp/data

This is a test

rm/usr/tnp/ data

204936 9 — 0 January 2000

Page 22 Solaris VM Ebus Driver I XCE

A SOLEGTRON SUBSIDIARY

Installation and Configuration Guide Troubleshooting

Troubleshooting

If a VMEDbus bus error occurs, vire_dunp will terminate with a core
dump, vimecp with an I/O error. If this happens, make sure that

» the respective CPU board is present and accessible at the VMEbus
address specified, and that it does not conflict with other bus partici-
pants.

» the respective CPU board accepts extended supervisory data accesses
(AM codeODyg).

For a detailed troubleshooting discussion, see next section.

3.3 Troubleshooting

If the installation aborts, the package is considered to be only partially in-
stalled. An appropriate message will be displayed before ending the in-
stallation. Have a second try on the package installation after checking
the following:

Older version Check whether an older version has not been uninstalled before installing

already installed the new version of the Solaris VMEbus Driver. Also note that the system
has to be rebooted after installing or uninstalling a nexus driver as is true
for the Solaris VMEbus Driver package.

Irregular boot If the boot process terminates before the VMEDbus driver is loaded (boot
termination with the optiont v to see every boot message), this may be caused by

* some hardware defect: see respective manual to locate the defect),

* incorrect OpenBoot boot settings: consult the respective CPU board’s
manual to figure out the default setting and use the CPU board’s
default setting for a retry,

» orthe standard Solans:p driver trying to access the VMEbus hard-
ware: Solaris 2.x includes a driver of thee class (sed ker -
nel / dr v/ ntp). Unfortunatelyntp assumes that it found arcp
board if accessing certain VMEbus addresses is possible and does not
double check this assumption, e.g by accessing a control register.
This can cause the VMEbus system to hang or to panic if there is
accidentally another board installed at one of the addresses accessed
by ncp. To avoid this, thecp driver should be removed.

ﬁﬁ[E Solaris VM Ebus Driver Page 23

A SOLECTRON SUBSIDIARY

Troubleshooting

Installation and Configuration Guide

Hang up after
VMEbus driver
message

— system contr.

— address ranges

Missing drivers

If the system hangs without any further messages after the VMEbus driv-
er message is displayed, the system is trying to access the VMEDbus but
the access is not successful.

Check whether there is no system controller (arbiter) in the VMEbus rack
or the CPU board’s system controller function has been disabled. Check
the respective switch setting for the VMEDbus slot-1 configuration (e.g.
check the VMEDbus slot-1 auto-configuration and the VMEbus slot-1
manual mode switch, if implemented on the CPU board). Ensure

» that there is a system controller present,

that there is only one system controller in the VMEbus rack,

and that it is plugged into slot 1 of the VMEDbus rack.

When there are several CPU boards installed in the rack,

» check the VMEbus addresses of all installed CPU boards. The VME-
bus address ranges of the CPU boards must be non-overlapping.

* make sure that the master CPU board does not try to decode its own
VMEDbus addresses. For example, this happens ifsthevew n
property is enabled (see section 5.1 “VME Nexus Driver Configura-
tion” on page 99) and some device driver is configured to use this
address range.

Unlike in former Solaris versions, no drivers — be it nexus or be it leaf
drivers — will be loaded permanently by default. Instead, Solaris 2.x dy-
namically loads every driver when it is needed. To check which drivers
are loaded, use theodi nf o command. Due to dynamic loading, it
might well be that no driver is loaded after a reboot. Only when booting
with the reconfigure optionr , any installed driver will be registered.

Note: Some VME leaf drivers may not be loaded on hardware that
lacks the corresponding hardware features. For example, the
vimedrma and vnef dma drivers cannot be installed on S4 based
boards, since the $4 SBus-to-VME bridge hasno DMA controller.

204936 9 — 0 January 2000

Page 24

Solaris VM Ebus Driver F\/%[E

Installation and Configuration Guide Limitations

3.4 Limitations

The user interface of this software package stays the same regardless of
the type of the CPU board this package is installed on. However, the fol-
lowing limitations apply:

» Afunction call may be parameterized by values that are depending on
the type of CPU board used: for example, reading a register depends
on the register’s address which in general is specific to the CPU board
and the VMEDbus interface chip being used on the CPU board. There-
fore, a header file is available for each interface chip containing the
#def i ne statements for each available register address.

» A function call does not necessarily have an effect: If the CPU board
does not support a feature required to execute a given function call,
the function can be called but it will return without having any effect.
For example, there are CPU boards

— providing only 1 master window, whereas others provide up to 16.
— being unable to generate VMEDbus interrupts.

For information on such limitations, see thataris VMEbus Driver
Release Notes of the release under consideration and the CPU board’s
Technical Reference Manual.

» The following limitation results from the Sun 4m architecture: The
vimef dma andviredvima drivers need kernel memory for their buff-
ers. For Sun 4m architectures, the kernel memory is limited to
100 MByte. However, not all of the kernel memory is available at
run-time. The longer the system is up running, the more fragmented
the kernel memory becomes. Further more, the used memory size is
limited by the IOMMU. The IOMMU address space is maximally
64 MByte, and just as the kernel memory it becomes the more frag-
mented the longer the system has been up running.

ﬁﬁ[E Solaris VM Ebus Driver Page 25

A SOLECTRON SUBSIDIARY

Limitations

Installation and Configuration Guide

Page 26

Solaris VM Ebus Driver F\/%[E

A SOLEGTRON SUBSIDIARY

204936 9 — 0 January 2000

Application Programmer’s Guide

4 Application Programmer’s Guide

Application programmers need to know the interfaces between the leaf
driver and the application. The Force Computers leaf drivers provide 2
such interfaces:

1. the standard UNIX system calls: For information on them, see the
man pages and the respective Solaris manual on system calls.

2. the VUI — the VME user application interface which is an additional
layer of abstraction between a user application and the device drivers
for VME related functions.

Both interfaces are described in this section for every leaf driver included
in the Solaris VMEbus Driver package.

Using VUI To use VUI functions, the application must be linked with the VUI li-
functions braryl i bvui . ain/opt/FRCvnme/ usr/1ib/ or/usr/lib/:

cc -0 app app.c -L/opt/FRCvne/usr/lib -Ivui

or:

cc -0 app app.c -Llusr/lib -Ilvui

Example For examples on how to access the VMEbus see the sample source code
in/ opt / FRC/ exanpl es.

A SOLECTRON SUBSIDIARY

ﬁﬁ[E Solaris VMEbus Driver Page 27

vepl us

Application Programmer’s Guide

4.1 vnepl us

Devices

virepl us replaces Sun'smenemdriver. It includes all the code neces-
sary to map and access VMEbus memory via programmed I/O. Addition-
ally, it provides handlers for VMEDbus interrupts which forward VMEbus
interupts as signals to processes. It is a standard character device driver.

By default, the driver provides access to a number of device nodes in /dev
which are named as follows:
/dev/ivmex space><data>
Where <space> is
» 16 for accessing data in A16 address spaces,
» 24 for accessing data in A24 address spaces,
» 32 for accessing data in A32 address spaces,

» crcsr for accessing data in the CR/CSR address space, and

» pani or pan® for accessing data in 1 of the 2 user-defined address
spaces. The generated AM code depends on the configuration of the
VME Nexus driver (see section 5.1 “VME Nexus Driver Configura-
tion” on page 99).

<data> denotes the way the data is transferred on the VMEDbus:

» d8 for 1-byte single cycles,

» d16 for 2-byte single cycles (including 1-byte cycles),

» d32 for 4-byte (lword) single cycles (including 1- and 2-byte cycles),
» Dbl t for BLT burst cycles (including all single cycles),

 nblt for MBLT (D64) burst cycles (including BLT burst and all sin-
gle cycles), and

» te for 2-edge burst cycles (including all other burst and single
cycles).

As can be seen, thedata> identifier denotes the maximum data capabil-

ity that will be generated on the VMEbus. However, the actual transfer
depends on the load/store operation(s) done by the processor. For exam-
ple, accessing an 1-byte entity via the /dev/ivme32d16 device will result
in 1-byte single cycles on the VMEDbus, but a 4-byte access will be split
into two 2-byte transfers on the VMEbus.

Note: The availability of these devices depends on the hardware
capabilities of the VM Ebus bridge used. Refer to the Release Notes
for details.

204936 9 — 0 January 2000

Page 28

Solaris VMEbus Driver F\/%[E

Application Programmer’s Guide vnepl us

Routines

Configuration

Configuration
file

To access the driver and its devices the following routines are supported:

* UNIX system callsppen(),cl ose(),read() ,wite(),
mmap(), munmap(),ioctl ().

* VUlcalls:vui _intr_ena(),~_dis(),vui _rm«),
vui _transfer_node_set (), ~_get().

virepl us overrides any default settings imposed by the VME nexus
driver with one exceptionVME: vire_di swp_f | ag (see section 3.1
“Configuration” on page 17).

The write posting property (off by default), which is related to VMEbus
accesses done nrepl us, is not controlled by selecting the appropri-
ate minor node. It primarily depends on the hardware capabilities wheth-
er this property can be controlled at all and if so, to which state they are
set. Refer to the corresponding section inRHease Notes for details.

To change the default behavior,

 modify the vreplus:vne_nmaster _default parameter in
/et c/system(seesyst enm(4)). The parameter’s value is a bit-
mask containing bus property bits (see section 6 “VME Bus Proper-
ties” on page 159).

* orusevui _transfer_node_set() (see page 40). This over-
rides thevnepl us: vire_mast er _def aul t setting.

Example:

To enable write posting for VMEbus accessew bgpl us, insert the
following line in /etc/system:

set vmepl us: vhe_nast er _def aul t =0x1000000

[kernel /drv/vrepl us. conf is the vmeplus configuration file.
The file ends with a semicolon.

Sample configuration file:

i nt errupt s=4, Ox4c, 5, 0x50

reg=0x2d, 0, 0x10000, 0x3d, 0, Oxf f 0000,
0x0d, 0, 0xf f 000000, 0x6d, 0, 0x10000,
0x7d, 0, Oxf f 0000, 0x4d, 0, 0xf f 000000,
0x2f, 0, 0x1000000, 0x6f , 0, 0x1000000,
0x10, 0, 0xf f 000000, Ox11, 0, Oxf f 000000,
0x50, 0, 0xf f 000000, 0x51, 0, Oxf f 000000

name="vmepl us" cl ass="vne";

ﬁﬁ[E Solaris VMEbus Driver Page 29

A SOLECTRON SUBSIDIARY

vepl us Application Programmer’s Guide

—hane Ensure that theane="vnepl us" statement is always included in the
configuration file as described in the sample configuration file. The driv-
er name in this case is alwaysepl us.

—cl ass Ensure that thel ass="vne" statement is always included in the con-
figuration file as described in the sample configuration file. Thereby, the
actual driver name for the VMEbus interface which may vary across
hardware platforms is hidden from the leaf drivers and the parent is spec-
ified in terms of its interface type, instead: Via theass="vne" state-
ment, they relate themselves to the nexus driver of ciass

—interrupts Theinterrupts property isa comma separated list of pairs:
» the first entry in a pair being the VMEDbus IRQ level
» and the second being a VMEbus IRQ vector number.

The first interrupt property (IRQ#4 vectdx4c) has the property num-
ber 0, the second pair of values has the property nurbhbe&nd so on.
This is important for theui _i ntr_ena() and vui _i ntr_di s()
functions (see section 4.1.5 “vui_intr_ena(), vui_intr_dis()” on page 37).

Sharing the same interrupt vector among several interrupt levels is possi-
ble.

-reg Ther eg property is a comma separated list of triples which define bus
type, the start address and end address of accessible VMEbus areas. Refer
to section 5.2.2 “VMEbus Mappings” on page 105 for details on the for-
mat of VMEbus eg properties.

The order of the eg-triples is unimportant. Themepl us driver will
create device nodes idgv based on the number of triples present, and
the names are defined based on the information found in the bus type
fields.

The device names generally do not reflect whether non-privileged, super-
visory, program or data accesses are generated on the VMEDbus.

Absolute data As already mentioned, the data width generated by programmed 1/O may
widths alter, e.g. a 1-byte access may be done even when usingeRed32
device. This is especially the case when using @ed()/wite()
system calls.
By setting one or both of the propertessol ut e- wi dt h-r ead and
absol ute-width-wite into vneplus.conf to 1, the driver
will alter the behavior of theead() andwite() system calls re-
spectively. The driver will make sure that the size of VME single cycles
are made with the same data size as defined by the name of the device
used to perform the accesses. Both source and destination addresses must
be properly aligned.

204936 9 — 0 January 2000

Page 30 Solaris VMEbus Driver F\/%[E

Application Programmer’s Guide vnepl us

41.1 open(), clos)

SYNTAX

DESCRIPTION

RETURN
VALUES

ERRORS

Note: Setting the absol ut e- wi dt h- xxx properties significantly
degrades the data throughput of the read()/write() system
calls.

#i ncl ude <sys/types. h>

#i ncl ude <sys/stat.h>

#i nclude <fcntl. h>

int open(
const char *path, /* path to device node */
int oflag);/* Open Flags*/

#i ncl ude <uni std. h>
int close(int filds);/* File handl e of opened device */

open()
obtains access to aVMEDbus device and preparesiit for use.

cl ose()
closes a VMEDbus file descriptor associated with a VMEbus device.

Both operations are similar to standard open(2) and cl ose(2) . For
further information, see the respective man pages.

On successful completion, open() returns the file descriptor. Other-
wise, - 1 isreturned and er r no isset to indicate the error. cl ose() a-
waysreturns 0. Seetheopen(2) andcl ose(2) man pages.

See al'so man pages of open(2) andcl ose(2).
ENXIO

The minor node of the device is not supported. E.g. vimecr csr 16 is
not supported for FGA-5000 based CPU boards.

ﬁﬁ[E Solaris VMEbus Driver Page 31

A SOLECTRON SUBSIDIARY

vnepl u

S

Application Programmer’s Guide

412

read(), write()

SYNTAX

DESCRIPTION

RETURN
VALUES

ERRORS

#i ncl ude <sys/types. h>
#i ncl ude <sys/uio. h>
#i ncl ude <uni std. h>
size_t read(
int filds, /* File handl e of opened dev */
void *buf,/* buffer to receive data */
size_t nbyte);/* nunber of bytes to transfer */

#i ncl ude <uni std. h>

size_t wite(
int filds,/* File handle of opened dev */
const void *buf,/* buffer containing data */
size_t nbyte);/* nunber of bytes to transfer */

read()
copies a block of data from the VMEbus address space to a user pro-
cess buffer.

wite()
copies a block of data from a user process buffer to the VMEDbus ad-
dress space.

Theread() andw it e() function callsimplement reading of or writ-
ing to a previously opened VME device by using programmed 1/O. For
higher performance use the DMA or fast DMA driver (/ dev/ vne-
dmaxxdyy or / dev/ viref dmaxxdyy) which provide a similar inter-
face.

The VMEDbus address to be accessed is defined by the file pointer, which
inturncanbesetby | seek() and|l | seek().

Both operations are similar to standard r ead(2) andwite(2). For
further information, see the respective man pages.

On successful completion, the number of bytes transferred is returned.
Otherwise, - 1 isreturned and er r no is set to indicate the error (see the
read(2) andwrite(2) man pages).

Seealsotheread(2) andwr it e(2) man pages.

EAGAIN
At the time of execution the action cannot be done, e.g. because no re-
sources are available.

EINTR
The process has been interrupted by a signal while waiting for resourc-
esto become available.

EINVAL
Invalid argument.

Page 32

Solaris VMEbus Driver F\/%[E

204936 9 — 0 January 2000

Application Programmer’s Guide vnepl us

ENOTSUP
Action not supported.

EFAULT
The system call has been terminated due to a bus error on the VMEDbus.

Note: The write() system call usually cannot detect whether a
write access has been terminated by a VME buserror, i.e. it will not
return an error code. At least in case of VME write posting being
disabled, error detection can be enabled by setting the absol ut e-
w dth-wite property in the driver configuration file (refer to
“Absolute data widths” on page 30 for details).

EXAMPLE {

int vnedev;
int rc, i;
char buf[100];

i f ((vredev=open("/dev/vme32d32", O RDWR)) == -1)

{
perror("open"); ... *ERROR */

(void)printf(“filling the write buffer\n");
for (i=0; i<100;i++)
{

}
(void)printf("seeking to vme address 0x60000000\n");

if (Iseek(vmedev, 0x60000000, SEEK_SET) == -1)
{

}
(void)printf("writing the buffer to the VME memory\n");

rc = write (vmedev, buf, 100);
if (rc <0)
{

}
(void)printf("seeking to vme address 0x60000000\n");

if (Iseek(vmedev, 0x60000000, SEEK_SET) == -1)

buf[i]=i;

perror("lseek"); ... /* ERROR */

perror(“write"); ... /* ERROR */

{
perror("lseek"); ... /* ERROR */

}

rc = read (vmedev, buf, 100);

if (rc <=0)

{

perror(“read"); ... /* ERROR */
}

(void)close(vmedev);

ﬁﬁ[E Solaris VMEbus Driver Page 33

A SOLECTRON SUBSIDIARY

vepl us

Application Programmer’s Guide

41.3 mmap(), munmap()

SYNTAX

DESCRIPTION

RETURN
VALUES

#i ncl ude <sys/types. h>

#i ncl ude <sys/ mman. h>

caddr _t mmap(
caddr _t addr,/* virtual address hint */
size t len, /* # bytes to map in */
int prot, /* protection node */
int flags,/* flags for page handling */
int fildes, /* VME dev file handle */
off _t off);/* VMEbus address */

#i ncl ude <sys/types. h>

#i ncl ude <sys/mman. h>

int munmap(
caddr _t addr,/* usr addr for mapped WME bl ock */
size_t len);/* block size mapped in bytes */

mrap()
allows a VME address range to be mapped into an application’s ad-
dress space.

munmap()
removes a previously set up mapping. Partial unmapping is not sup-
ported.

Note: Even though the argument of f is specified to be a signed
value afull 32-bit VM Ebusaddressfor A32 devicesmay beused. The
driver will interpret it asa 32-bit unsigned value.

Note: It is not possible for a process to set up a mapping whose
address range overlaps a range previousy mapped for the same
device by this process.

The type of the mapped VMEbus address space is determined by the
opened device node. Additional parameters, like enabling write posting,
can be set vigui _transfer_node_set () (see page 40).

Mapped VMEbus address ranges and their properties are inherited when
a process forks.

Mappings must be set up as shared, i.ef theegs parameter has to be

set toMAP_SHARED.

The requested VMEbus address must be aligned to the hardware page
boundary (seget pagesi ze(30)).

mrap()
On successful completiommap() returns the start address within the £
application’s address space to which the VME device has been

2000

0

204936 9

Page 34

Solaris VMEbus Driver F\/%[E

Application Programmer’s Guide vnepl us

ERRORS

EXAMPLE

mapped. Otherwise, it returns MAP_FAI LED and setser r no to indi-
cate the error (see the man page for mmap(2)).

munmap()
On successful completion, munmap() returns 0. Otherwise, it returns
- 1 and setser r no to indicate the error (see munmap(2)).

See also the man page for map(2) and nunmap(2) .

EAGAIN
At the time of execution the action cannot be done, e.g. because no re-
sources are available.

EINTR
The process has been interrupted by asignal while waiting for resourc-
esto become available.

EINVAL
Invalid argument.

ENOTSUP
Action not supported.

#i ncl ude <stdi o. h>
#i ncl ude <fcntl. h>
#i ncl ude <sys/mman. h>

voi d mai n()

{

int vmedev, i;

char *cptr, *v_vneaddr;

/* Qpen device */

if ((vnedev = open("/dev/vnme32d32", O RDWR)) == -1) {
perror("/dev/vnme32d32"); exit(1);

}

/* Map 240 MBytes of VME menory */

v_vneaddr = nmap(0, 240*1024*1024, PROT_READ| PROT_WRI TE,

MAP_SHARED, vnedev, 0x60000000);

if (MAP_FAILED == v_vneaddr) ({
perror("mrap"); exit(1l);

}

/* wite zeros to VME using D8 (char) single cycles. */

printf("Clearing 240 MB nenory at VME 0x60000000. "
"Press CTRL-C to abort\n");

for (cptr = v_vmeaddr; cptr < v_vneaddr +240*1024*1024;

cptr++)

*cptr = 0;

exit(0);

}

ﬁﬁ[E Solaris VMEbus Driver Page 35

A SOLECTRON SUBSIDIARY

vepl us Application Programmer’s Guide

4.1.4 ioctl()

SYNTAX #i ncl ude <unistd. h>
#i ncl ude <sys/vne_types. h>
#i ncl ude <sys/vne. h>
#i ncl ude <sys/vui.h>
int ioctl(int fildes, int request, /* arg */ ...);

DESCRIPTION ioctl ()
performs various device-specific control functions on devices.
r equest and an optional third argument with varying type are passed
to the file designated by f i | des and are interpreted by the device
driver. For further information see man pagesof i oct | (2) .

Note: It is strongly recommended to use VUI functions instead of
ioctl ().

VARIABLES fildes
file descriptor of an opened VME device

request
selects the control function to be performed and depends on the device
being addressed. The following requests are defined:

VME_RMW
VME_TRANSFER MODE_SET
VME_TRANSFER MODE_GET
VME_| NTR_ENA
VME_INTR DI S

For a description of how these requests work see the respective VUI
function (vui _rmm(),...). For examples how to usect | (), see
the source code of the VUI functions.

arg
parameter that might be needed by the specified device to perform the
requested function. The data typeasfg depends on the particular
control request, but it is either ant or a pointer to a device-specific
data structure.

RETURN On successful completion, the value returned depends on the device con-
VALUES trol function, but it is always a non-negative integer. Otherwi$ds re-
turned ancer r no is set to indicate the error.

ERRORS See man pages afct | (2) and VUI functions

204936 9 — 0 January 2000

Page 36 Solaris VMEbus Driver F\/%[E

Application Programmer’s Guide vnepl us

415

vui_intr_ena(), vui_intr_dis()

SYNTAX #i ncl ude <sys/vme_types. h>
#i ncl ude <sys/vne. h>
#i ncl ude <sys/vui.h>
int vui _intr_ena (int dev, ioctl_irq_t *intr)
int vui _intr_dis (int dev, ioctl_irq_t *intr)

DESCRIPTION vui _intr_ena()
enables the VMEDbus interrupt defined in the structurei nt r and for-
wardsit as signa to the calling process.

vui _intr_dis()
disables the interrupt defined in the structurei nt r .

VARIABLES dev
file descriptor of an opened VME device

*intr
pointer to interrupt definition structi oct _irq_t

Thestructi oct!l _irqg_t isdefinedinvne. h:
struct ioctl_irq

{
i nt prop; /*...enain,...disin:
* property from vmeplus.conf file */
int sig; /* ...enain: signal, -1 means no signal */
int level; /* not relevant for these calls */
int vector;/* not relevant for these calls */

}

typedef struct ioctl_irq ioctl_irg_t;

prop
defines the index (zero based) of the interrupt property pair. Each in-
terrupt must be defined in the vimepl us driver's configuration file
(ker nel / drv/ vepl us. conf) by means of an interrupt property,
which describes level and vector. Input fari _i ntr_ena() and
._dis() .

sig
sets the signal which shall be sent to the user application when the in-
terrupt occurs. Input for vui_intr_ena()

Not all signals can be sent to an application. For alist of possible sig-
nals, seethe proc_signal(9F) man page.

level
interrupt level, for these calls not relevant and therefore undefined.

ﬁﬁ[E Solaris VMEbus Driver Page 37

A SOLECTRON SUBSIDIARY

vepl us

Application Programmer’s Guide

RETURN

VALUES

ERRORS

EXAMPLE

vect
interrupt vector, for these calls not relevant and therefore undefined.

By default, there can be 7 interrupts at maximum defined in the vire-
pl us. conf file. The interrupt property itself can be set to the user’s
needs.

On successful completioWUl _ K is returned. Otherwis&/Ul _FAl L
is returned aneér r no is set to indicate the error.

See also man pages ott | (2)

EACCES
In case ofvui _i ntr_di s() the interrupt to be disabled has been
enabled by another process.

EAGAIN
In case oivui _i ntr_ena() the interrupt is already enabled.

EINVAL
Invalid argument, e.g. because #igy parameter of the request struc-
ture denotes a signal that cannot be used, or becausedpeparam-
eter does not reference an existing entryriepl us. conf .

ENOTSUP
Action not supported.

int sighdl(int arg)
{

i ntr_count ++;

}

void test _funct(void)

{
i nt vnedev;
ioctl _irqg_t intr;

int dumy;

/* open sone vneplus device */
if ((vredev=open("/dev/vme32d32", O RDWR)) == -1)
{

}

perror("open"); ... /*ERROR */

intr.prop = 0;
intr.sig = SIGINT
intr_count = 0;

Page 38

Solaris VMEbus Driver F\/%[E

204936 9 — 0 January 2000

Application Programmer’s Guide vnepl us

41.6 vui_rmw()

SYNTAX

DESCRIPTION

VARIABLES

RETURN
VALUES

ERRORS

/* set the signal handler */
sigset(SIGNT, sighdl);

/* activate the interrupt */
vui _intr_ena(vrmedev, & ntr);

/* receive ten interrupts */
while (intr_count < 10)
{
wai t (&ummy);
printf(“Interrupt %d received\n”, intr_count);

}

vui_intr_dis(vmedev, &intr);
sigset(SIGINT, SIG_DLF);
(void)close(vmedev);

#include <sys/vme_types.h>
#include <sys/vme.h>
#include <sys/vui.h>
int vui_rmw (
int dev,
vmeaddr_t vmeaddr,
ubyte_t *value);

vui _rmm)
performs a read-modify-write cycle (load and store unsigned byte)

dev
file descriptor of an opened VME device

vireaddr
VME address for the transaction

val ue
value to be written to the VME address.

Note: The hardware implementation may limit the values that can
actually be written. Refer to the Release Notes for details on the
board under consider ation.

On successful completion, VUl _OK is returned. Otherwise, VUl _FAI L
isreturned and er r no is set to indicate the error.

See also man pagesof i octl (2)

ﬁﬁ[E Solaris VMEbus Driver Page 39

A SOLECTRON SUBSIDIARY

vepl us Application Programmer’s Guide

EAGAIN
At the time of execution the action cannot be done, e.g. because no re-
sources are available.

EFAULT
A VMEDbus error occurred during the transaction.

EINVAL
Invalid argument, or no more ranges are available.

ENOTSUP
Action not supported.

EXAMPLE {
int vnedev;
i nt val ue;
if ((vmedev=open("/dev/vne32d32", O RDWR)) == -1)
{
perror("open"); .../* ERROR */
}
value=0xff;

vui_rmw(vmedev, (vmeaddr_t) 0x60000000, &value);

(void)close(vmedev);

417 vui_transfer_mode_set(), vui_transfer_mode_get()

SYNTAX #include <sys/vme_types.h>
#include <sys/vme.h>
#include <sys/vui.h>
int vui_transfer_mode_set (int dev, bt_t tm)
int vui_transfer_mode_get (int dev, bt_t *tm)

DESCRIPTION vui _transfer_node_set ()
sets the transfer mode for al following master accesses done via
mmap(), read() / wite(), or vui _rmm). Only those bus
properties are relevant which are masked by VME_BT_TMASK.

vui _transfer_node_set () allows to change the driver's de-
fault behavior. Alternativelyynepl us: vire_mast er _def aul t
can be set appropriately fret ¢/ syst em(see section 3.1 “Configu-
ration” on page 17).

vui _transfer_node_get ()
returns the actual transfer mode im

VARIABLES Variables forvui _transfer _node_set ():

Page 40 Solaris VMEbus Driver F\/%[E

204936 9 — 0 January 2000

Application Programmer’s Guide vnepl us

dev
file descriptor of an opened VME device

tm
flags defining the transfer mode(s) to enable or disable. Only the flags
masked by VME_BT_TMASK are relevant (see sys/ vire_t ypes. h
and section 6 “VME Bus Properties” on page 158VE_BT_WP,
~_PF, ~_UNALI GN, ~_PRI AUTO, and~_PROGAUTO.

To enable or disable the transfer mode(s) described by the asserted
bit(s), thet mvalue can be the logical OR of one of the following val-
ues:

VUl _SET Set this flag to enable the specified transfer modes.
VU _CLEAR Set this flag to disable the specified transfer modes.

Variables forvui _t ransfer _node_get ():
dev
file descriptor of an opened VME device

*tm
pointer for the current bus properties. Within this pointer the current
bus properties are returned. Possible bus properties are defined within
the header filevme_types. h. (see sys/vnme_types. h and
section 6 “VME Bus Properties” on page 159).

Note: It is not possible to set the transfer modes for individual
device nodes or processes. At the moment when the transfer modeis
set up, it is valid for the whole driver instance. For the vimepl us
driver this means the following: if the transfer mode is set up for
example for / dev/ vme32d32, it is valid for all / dev/ vimexxdyy
devices and for all other processes using these devices. However,
existing mappings will not be affected.

RETURN On successful completioWUl _ K is returned. Otherwis&/Ul _FAIl L
VALUES is returned aner r no is set to indicate the error.
ERRORS See also man pages ott| (2)

EINVAL

Invalid request or argument.

EXAMPLE {

int vnedev;
bt t tm

if ((vredev=open("/dev/vnme32d32", O RDWR)) == -1)

ﬁﬁ[E Solaris VMEbus Driver Page 41

A SOLECTRON SUBSIDIARY

vepl us

Application Programmer’s Guide

{
}

perror("open"); .../* ERROR */
[* disable write posting for all vmeplus devices */
vui_transfer_mode_set(vmedev, VUI_CLEAR | VME_BT_WP);

/* read out the actual transfer mode */
vui_transfer_mode_get(vmedev, &tm);

(void)close(vmedev);

Page 42

Solaris VMEbus Driver F\/%[E

A SOLEGTRON SUBSIDIARY

204936 9 — 0 January 2000

Application Programmer’s Guide vmedna

4.2 vnednma

The vmedmma driver utilizes the on-board DMAC (direct memory access
controller). It contains all the code necessary to initiate a transfer from
user space to VM Ebus memory, and vice versa.

Devices By default, the driver provides access to a number of device nodes in
/dev which are named as follows:
/ dev/ vredma<space><dat a>
Where <space> may be
» 16 for accessing data in A16 address spaces,
» 24 for accessing data in A24 address spaces,
» 32 for accessing data in A32 address spaces,
» crcsr for accessing data in the CR/CSR address space, and
<dat a> denotes the way the data is transferred and may be
» d8 for 1-byte single cycles,
» d16 for 2-byte single cycles (including 1-byte cycles),

» d32 for 4-byte (lword) single cycles (including 1- and 2-byte trans-
fers),

» Dbl t for BLT burst cycles (including all single cycles),

 nblt for MBLT (D64) burst cycles (including BLT burst and single
cycles), and

» te for 2-edge burst cycles (including all other burst and single
cycles).

Routines To access the driver the following routines are supported:

* UNIX system callsopen(),cl ose(),read() ,wite(),
ioctl ().

* VUl calls:vui _dma_mal | oc() .

Configuration [kernel /drv/vrmedma. conf is thevrmedma configuration file. It

file contains a eg property which defines themednaxxx device nodes
created indev. For a on the format of theeg properties refer to
section 5.2.2 “WMEbus Mappings” on page 105.
Ther eg property may be modified for accessing VMEbus address spac-
es not present in the default configuration.

ﬁﬁ[E Solaris VMEbus Driver Page 43

A SOLECTRON SUBSIDIARY

viredma

Application Programmer’s Guide

421 open(), clos)

SYNTAX

DESCRIPTION

RETURN
VALUES

ERRORS

422 read(), write()

SYNTAX

DESCRIPTION

#i ncl ude <sys/types. h>

#i ncl ude <sys/stat.h>

#i nclude <fcntl. h>

int open(
const char *path,/* path to device node */
int oflag);/* Open Flags*/

#i ncl ude <uni std. h>
int close(int filds);/* File handl e of opened device */

open()
obtains access to the VMEDbus device and preparesiit for use.

cl ose()
closes aVMEDbusfile descriptor associated with a VMEbus device.

Both operations are similar to standard open(2) and cl ose(2) . For
further information, see the respective man pages.

On successful completion, the file descriptor is returned. Otherwise, - 1
isreturned and er r no is set to indicate the error (see the open(2) and
cl ose(2) man pages).

Seeasotheopen(2) andcl ose(2) man pages

ENXIO
The minor node of the device is not supported. E.g. vimedma32t e is
not supported for FGA5000-based CPU boards.

#i ncl ude <sys/types. h>
#i ncl ude <sys/uio. h>
#i ncl ude <uni std. h>
size_t read(
int filds, /* File handl e of opened dev */
void *buf,/* buffer to receive data */
size_t nbyte);/* nunber of bytes to transfer */

#i ncl ude <uni std. h>

size_t wite(
int filds,/* File handle of opened dev */
const void *buf,/* buffer containing data */
size_t nbyte);/* nunber of bytes to transfer */

read()
copies a block of data from the VMEbus address space to a user pro-
cess buffer.

Page 44

Solaris VMEbus Driver F\/%[E

A SOLEGTRON SUBSIDIARY

204936 9 — 0 January 2000

Application Programmer’s Guide vmedna

wite()
copies a block of data from a user process buffer to the VMEDbus ad-
dress space.

Theread() andw it e() function calsimplement reading of or writ-
ing to a previously opened VME device. Viaread and write system calls
the entire 32-bit VME spaceis accessible. VME D32, D16, BLT, MBLT,
and 2eVME accesses are supported (2eVME as of Solaris VMEbus Driv-
er release 2.1).

The value of the file pointer can beset using | seek() and! | seek().
With the help of these 2 function calls, the starting VME address for read
or write access can be specified.

Both operations are similar to standard r ead(2) andwite(2). For
further information, see the respective man pages.

Note: Some hardware needs properly aligned buffer and/or
VM EDbus addresses (refer to the Release Notes if thisis true for the
CPU board you use). To allocate the DM A buffer, it is recommended

to use the VUI function vui _dma_mal | oc() which allocates
properly aligned memory (see section 4.2.4 “vui_dma_malloc()” on
page 47). For VMEbus addresses, it is safe to use page-aligned start
addresses and sizes.

RETURN On successful completion, the number of bytes transferred is returned.
VALUES Otherwise, - 1 isreturned and er r no is set to indicate the error (see the
read(2) andwrite(2) man pages).
ERRORS Seeasotheread(2) andw it e(2) man pages
EINVAL
Invalid request or argument.
EIO

An 1/O error occurred during the transaction. The fault address might
also be displayed on the system console.

EXAMPLE { ...
i nt vmedev;
int rc, i;
char *buf;

i f ((vredev=open("/dev/vmedna32d32", O RDWR)) == -1)
{

}

/* allocate a 64K buffer and fill it */
buf = (char*)vui_dma_malloc(vmedev, 0x10000);
if (buf == NULL)

perror("open"); .../*ERROR */

A SOLECTRON SUBSIDIARY

ﬁﬁ[E Solaris VMEbus Driver Page 45

viredma

Application Programmer’s Guide

4.2.3

ioctl()

SYNTAX

DESCRIPTION

{

}
for (i=0; i<0x10000; i++)

perror("vui _dma_malloc"); .../* ERROR */

buf[i]=i;
}

/* seek to VMEbus address and write the buffer */
if (Iseek(vmedev, 0x60000000, SEEK_SET) == -1)

{

perror("lseek"); ... /* ERROR */
}
rc = write (vmedev, buf, 0x10000);
if (rc <0)
{

perror(“write"); ... /* ERROR */
}

/* seek to VMEbus address and read into buffer */
if (Iseek(vmedev, 0x60000000, SEEK_SET) == -1)

{

}
rc = read (vmedev, buf, 0x10000);

if (rc <=0)
{

}
free(buf);

(void)close(vmedev);

perror("lseek™); ... /* ERROR */

perror("read"); ... * ERROR */

#include <unistd.h>

#include <sys/vme_types.h>

#include <sys/vme.h>

#include <sys/vui.h>

int ioctl(int fildes, int request, /* arg */ ...);

ioctl()
performs various device-specific control functions on devices. r e-
qguest and an optional third argument with varying type are passed to
thefile designated by f i | des and are interpreted by the device driv-
er. For further information see also the man pagesof i oct | (2) .

Note: It is strongly recommended to use VUI functions instead of
ioctl ().

Page 46

Solaris VMEbus Driver F\/%[E

A SOLEGTRON SUBSIDIARY

204936 9 — 0 January 2000

Application Programmer’s Guide vmedna

VARIABLES fildes
file descriptor of an opened VME DMA device

request
selects the control function to be performed and depends on the device
being addressed. The following requests are defined:

VME_DVA_GET_STATUS
VME_DMA_| NFO

For a description of how these requests work see the respective VUI
function (vui _dma_mal | oc(),...). For examples how to use
i octl (), see the source code of the VUI functions.

arg
Parameter that might be needed by the specified device to perform the
requested function. The data typeasfg depends on the particular
control request, but it is either ant or a pointer to a device-specific
data structure.

RETURN On successful completion, the value returned depends on the device con-
VALUES trol function, but always is a non-negative integer. Otherwiseis re-
turned ancer r no is set to indicate the error.

ERRORS See man pageidaict | (2) and VUI functions

4.2.4 vui_dma_malloc()

SYNTAX #i ncl ude <sys/vme_types. h>
#i ncl ude <sys/vne. h>
#i ncl ude <sys/vui.h>
void *vui _dma_mall oc (int dev, size_t size)

DESCRIPTION vui _dma_mal | oc()
allocates a buffer to be used fomedrma DMA operations. It checks
the required alignment of the hardware and aallsal i gn() in-
stead ofmal | oc() . See also theemal i gn(3C) man pages. Use
fr ee(3C) to release the buffer.

VARIABLES dev
file descriptor of an opened VME DMA device

si ze
size of the buffer to allocate

RETURN On successful completion, the buffer address is returned. If there is no
VALUES memory available or if the given file descriptor does not specify a VME

ﬁﬁ[E Solaris VMEbus Driver Page 47

A SOLECTRON SUBSIDIARY

vedna Application Programmer’s Guide
dma device, vui _dnma_mal | oc() returns NULL. For err no values,
seethermenmal i gn(3C) andi oct | (2) man pages.
ERRORS Seedsoi oct | (2), memaign(3C), and free(3C) man pages
ENOTSUP
Action not supported.
EXAMPLE { ...
i nt vnedev;
int rc, i;
char *buf;
i f ((vmedev=open("/dev/vmednma32d32", O RDWR)) == -1)
{
perror("open"); .../* ERROR */
}
[* allocate a 64K buffer */
buf = (char*)vui_dma_malloc(vmedev, 0x10000);
if (buf == NULL)
{
perror("vui_dma_malloc"); ... /* ERROR */
}
for (i=0; i<0x10000; i++)
buffil=i;
}
[* seek toVMEbus address */
if (Iseek(vmedev, 0x60000000, SEEK_SET) == -1)
{
perror("lseek"); ... /* ERROR */
}
[* write the buffer */
rc = write (vmedev, buf, 0x10000);
if (rc <0)
{
perror("write"); ... /* ERROR */
}
if (Iseek(vmedev, 0x60000000, SEEK_SET) == -1)
{
perror("lseek™); ... /* ERROR */
}
[*..and read it */
rc = read (vmedev, buf, 0x10000);
if (rc <= 0)
{
perror(“read"); ... /* ERROR */
}
free(buf);
(void)close(vmedev);
}

Page 48

Solaris VMEbus Driver F\/%[E

A SOLEGTRON SUBSIDIARY

204936 9 — 0 January 2000

Application Programmer’s Guide vef dma

4.3 vef dm

viref dma (fast DMA) avoids some software overhead typically emerg-
ing between 2 DMA transfers.

The viref drma driver does not lock memory. The user process has to al-
locate kernel memory via VUI functions and use this memory for
read() andwite() cals. When re-using this memory for every re-
quest,

» the IOMMU has to be set up only once, instead of setting it up for
every transfer,

« and the DMA buffer does not have to be locked because it is in kernel
memory.

This saves a significant amount of time.

Note: Depending on the system architecture, Solaris might not give
the allocated memory back for normal use. Refer to the Release
Notes for further information on allocating shared and DMA
memory for the CPU board under consider ation.

Devices By default, the driver provides access to a number of device nodes in /dev
which are named as follows:
/ dev/ vimef dma<space><data>
Where<space> may be
» 16 for accessing data in A16 address spaces,
* 24 for accessing data in A24 address spaces,
» 32 for accessing data in A32 address spaces,
» crcsr for accessing data in the CR/CSR address space, and
<data> denotes the way the data is transferred and may be
» d8 for 1-byte single cycles,
» d16 for 2-byte single cycles (including 1-byte cycles),

» d32 for 4-byte (lword) single cycles (including 1- and 2-byte trans-
fers),

» bl t for BLT burst cycles (including all single cycles),

 nblt for MBLT (D64) burst cycles (including BLT burst and single
cycles), and

 te for 2-edge burst cycles (including all other burst and single
cycles).

ﬁﬁ[E Solaris VMEbus Driver Page 49

A SOLECTRON SUBSIDIARY

viref dma

Application Programmer’s Guide

Routines

Configuration
file

4.3.1 open(), clos()

SYNTAX

DESCRIPTION

RETURN
VALUES

ERRORS

To access this driver the following routines are supported:

« UNIX System calls:open(), close(), read(), wite(),
mmap(), munmap(),ioctl ().

* VUlcalls: vui _fdma_mal l oc(), ~_free().

/ ker nel / drv/ vmedma. conf is thevmednma configuration file. It
contains a eg property which defines themednaxxx device nodes
created indev. For a on the format of theeg properties refer to
section 5.2.2 “VMEbus Mappings” on page 105.

Ther eg property may be modified for accessing VMEbus address spac-
es not present in the default configuration.

#i ncl ude <sys/types. h>

#i ncl ude <sys/stat.h>

#i ncl ude <fcntl. h>

int open(
const char *path,/* path to device node */
int oflag);/* Open Flags*/

#i ncl ude <uni std. h>
int close(
int filds);/* File handle of opened device */

open()
obtains access to the VMEbus device and prepares it for use.

cl ose()
closes a VMEDbus file descriptor associated with a VMEDbus device.

Both operations are similar to standangden(2) andcl ose(2). For
further information see the respective man pages.

On successful completion, the file descriptor is returned. Otherwise,
is returned aneér r no is set to indicate the error (see tpgen(2) and
cl ose(2) man pages).

See also man page®peén(2) andcl ose(2)
ENXIO

The minor node of the device is not supported. ¥Engef dnma32t e is
not supported for FGA5000-based CPU boards.

204936 9 — 0 January 2000

Page 50

Solaris VMEbus Driver F\/%[E

Application Programmer’s Guide vef dma

4.3.2 read(), write()

SYNTAX #i ncl ude <sys/types. h>

#i ncl ude <sys/uio. h>

#i ncl ude <uni std. h>

#i ncl ude <sys/vne_types. h>

#i ncl ude <sys/vne. h>

#i ncl ude <sys/vui.h>

size_t read(
int filds, /* File handl e of opened dev */
void *buf,/* |/O address */
size_t nbyte);/* no. of bytes to transfer */

#i ncl ude <uni std. h>

size_ t wite(
int filds,/* File handle of opened dev */
const void *buf,/* I/O address */
size_t nbyte);/* no. of bytes to transfer */

DESCRIPTION read()
copies a block of data from the VMEbus address space to a user pro-
cess buffer.

write()
copies a block of data from a user process buffer to the VMEDbus ad-
dress space.

Theread() andw it e() function calsimplement reading of or writ-
ing to a previously opened VME device. Viaread and write system calls
the entire 32 bit VME space is accessible. VME D32 and D16 accesses
are supported.

The value of the file pointer can be set using | seek() and| | seek().
With the help of these 2 function calls, the starting VME address for read
or write access can be specified.

Note: Before it is possible to read or write DMA memory via the
viref dma driver, it is necessary to allocate an 1/O buffer via
vui _fdma_mal | oc() (see pageb5). Use the resulting i oaddr
returned by vui _fdma_mal | oc() as buf argument for r ead()
orwite() accesses.

Both operations are similar to standard r ead(2) andwite(2). For
further information, see the respective man pages.

RETURN On successful completion, the number of bytes transferred is returned.
VALUES Otherwise, - 1 isreturned and er r no is set to indicate the error (see the
read(2) andwrite(2) man pages).

ﬁﬁ[E Solaris VMEbus Driver Page 51

A SOLECTRON SUBSIDIARY

viref dma

Application Programmer’s Guide

ERRORS

EXAMPLE

Seealsotheread(2) andw it e(2) man pages

ENXIO

The buf parameter does not reflect an 1/0O address as returned by
vui _fdma_mal | oc().

EINVAL

Invalid request or argument.

EIO

{

An 1/O error occurred during the transaction.

int vnedev;

int rc, i;

u_int *uvaddr NULL;
u_int *cvaddr NULL;
ioctl _map_t fdnm;

i f ((vmedev=open("/dev/vrmefdm32d32", O RDWR)) == -1)
{

}

* initialize the fdma struct */
fdma.data_size = 100 * sizeof(int);
fdma.prot = PROT_READ|PROT_WRITE;

perror("open"); .../* ERROR */

[* allocate some I/O memory */
if (NULL == (uvaddr = vui_fdma_malloc(vmedev, &fdma)))

{
perror("vui_fdma_malloc"); ... /* ERROR */

}
[* fill the buffer */
cvaddr = uvaddr:
for (i = 0:i < 100; i++)
{
*cvaddr=i:
cvaddr++;

}

[* position the file pointer */

Iseek(vmedev, 0x60000000, SEEK_SET);

/* do the write() access */

rc = write (vmedev, (void *)fdma.ioaddr, * sizeof(int));
if (rc <0)

{

perror(“write"); ... /* ERROR */

Page 52

Solaris VMEbus Driver F\/%[E

A SOLEGTRON SUBSIDIARY

204936 9 — 0 January 2000

Application Programmer’s Guide vef dma

/* G ve the space free */

vui _fdma_free(vnedev, & dma, uvaddr);
uvaddr = NULL;

cl ose (vredev);

vnedev = O;

i f ((vredev=open("/dev/vmefdm32d32", O RDWR)) == -1)
{

perror("open"); ... /* ERROR */

}

[* initialize the fdma struct */

fdma.data_size = 100 * sizeof(int);

fdma.prot = PROT_READ|PROT_WRITE;

[* allocate some 1/O memory */
if (NULL == (uvaddr = vui_fdma_malloc(vmedev, &fdma)))
{
perror("vui_fdma_malloc"); ... /* ERROR */
}
[* position the file pointer */
Iseek(vmedev, 0x60000000, SEEK_SET);
[* do the read() access */
rc =read (vmedev, (void *)fdma.ioaddr, 100 * sizeof(int)

);
if (rc <= 0)
{
perror(“read"); ... /* ERROR */
cvaddr = uvaddr:
for (i=0; i< 100; i++)
{
if (*cvaddr =)
{
printf(“WARNING:Read value failed\n");
}
cvaddr++;
}
vui_fdma_free(vmedev, &fdma, uvaddr);
uvaddr = NULL;
close (vmedev);
vmedev = 0;
}

433 mmap(), munmap()

SYNTAX #include <sys/types.h>

#include <sys/mman.h>

caddr_t mmap(
caddr_t addr,/* has to be 0 */
size_tlen, /* block size to map in B */
int prot, /* protection mode */
int flags,/* flags for page handling */
int fildes, /* file handle opened VME dev */
off_t off);/* I/O address of DMA buffer */

#include <sys/types.h>

ﬁﬁ[E Solaris VMEbus Driver Page 53

A SOLECTRON SUBSIDIARY

vef dma Application Programmer’s Guide

#i ncl ude <sys/ mman. h>

int munmap(
caddr _t addr,/* usr addr for napped VWME bl ock */
size_t len);/* block size mapped in bytes */

DESCRIPTION Both operations are similar to standard mmap(2) and nunmap(2) . For
further information, see the respective man pages.
Theof f identified the DMA buffer to be mapped and must be set to the
i oaddr element as returned in the ioctl_map structure of
vui _fdma_mal | oc().

Note: |t is strongly recommended to use vui _fdma_mal | oc()
and ~_free() instead of i oct| () and mmap() or munmap() (see

page 55).
RETURN mmap()
VALUES On successful completion, ntrap() returnsthe start address within the

application’s address space to which the VME device has been
mapped. Otherwise, it returfA\P_FAI LED and set®r r no to indi-
cate the error (see the man pagenioap(2)).

munmap()
On successful completiomunmap() returns0. Otherwise, it returns
-1 and setserrno to indicate the error (see the man page for
munmap(2)).

ERRORS See also tmerap(2) andmunnmap(2) man pages

EFAULT
Offset, size, or alignment are erroneous.

EINVAL
Invalid request or argument, or no more ranges are available.

ENOTSUP
Action not supported.

4.3.4 ioctl()

SYNTAX #i ncl ude <uni std. h>
#i ncl ude <sys/vne_types. h>
#i ncl ude <sys/vne. h>
#i ncl ude <sys/vui.h>
int ioctl(int fildes, int request, /* arg */ ...);

DESCRIPTION ioctl ()
performs various device-specific control functions on devices.
quest and an optional third argument with varying type are passed t

uary 2000

2

204936 9 o}a

Page 54 Solaris VMEbus Driver F\/%[E

Application Programmer’s Guide vef dma

thefile designated by f i | des and are interpreted by the device driv-
er. For further information see the man pagesof i oct | (2) .

Note: It is strongly recommended to use VUI functions instead of
ioctl().

VARIABLES dev
file descriptor of an opened VME device

request
selects the control function to be performed and depends on the device
being addressed. The following requests are defined:

VMVE_FDVA_MAP
VMVE_FDVA_UNMVAP

For a description of how these requests work see the respective VUI
function (vui _fdma_map(),...). For examples how to use
i octl (), see the source code of the VUI functions.

arg
parameter that might be needed by the specified device to perform the
requested function. The data typeasfg depends on the particular
control request, but it is either ant or a pointer to a device-specific
data structure.

RETURN On successful completion, the value returned depends on the device con-
VALUES trol function, but always is a non-negative integer. Otherwiseis re-
turned ancer r no is set to indicate the error.

ERRORS See man pages afct | (2) and VUI functions

4.3.5 vui_fdma_malloc(), vui_fdma_free()

SYNTAX #i ncl ude <sys/vne_types. h>
#i ncl ude <sys/vne. h>
#i ncl ude <sys/vui.h>
int vui_fdnma_nmalloc (
ind dev,
ioctl _map_t *fdma)
int vui_fdma_free (
int dev,
ioctl _map_t *fdma,
caddr _t vaddr)

DESCRIPTION vui _fdma_nal | oc()
allocates and mmaps a buffer to be used faef dna operations.

ﬁﬁ[E Solaris VMEbus Driver Page 55

A SOLECTRON SUBSIDIARY

viref dma

Application Programmer’s Guide

VARIABLE
TYPES

VARIABLES

vui _fdma_free()
destroys a DMA buffer (which was alocated and mapped with
vui _fdma_mal | oc()) and unmaps it from the address space of the
process.

The structurei oct | _map_t isdefinedinvme. h:
struct ioctl_nmap

{

uint_t data_size;/* length of area to be napped */
vneaddr _tvme_addr;/* not needed here */
caddr _t kvaddr;/* reserved */
ulong_t ioaddr;/* 1/0O address of buffer */
bt _t bt;/* zero */
i nt prot;/* Protection Mde */
uint_t flags;/* zero */
b

typedef struct ioctl_map ioctl_map_t;

data_si ze
length of areato be mapped

kvaddr
This element is reserved for internal use and should neither be modi-
fied nor interpreted in any kind.

i oaddr
returned I/O address, needed for r ead() andwri t e() accesses

pr ot
protection mode (same as used for mmap(2)):

PROT_READ Page can be read.
PROT_WRITE Page can be written.

PROT_NONE Page cannot be accessed.

Variablesforvui _fdma_mal | oc():
dev
file descriptor of an opened VME device

*f dma
pointer to mapping structure. All mapping information is returned in
this structure.

Variablesforvui _fdma_free():
dev
file descriptor of an opened VME device

*fdma
pointer to mapping structure. All mapping information needed to free
the memory is saved within this structure.

Page 56

Solaris VMEbus Driver F\/%[E

204936 9 — 0 January 2000

Application Programmer’s Guide vef dma

vaddr
Virtual address of the DMA buffer which has been returned by
vui _fdma_nmal | oc()

RETURN vui _fdma_mal | oc()

VALUES On successful completion, vui _f dma_mal | oc() returns a virtual
address where the DMA buffer can be accessed. Otherwise, O is re-
turned and er r no is set to indicate the error.

vui _fdma_free()
On successful completion, VUI _Kisreturned. Otherwise, VUl _FAI L is
returned and er r no is set to indicate the error.

ERRORS See also man pagesof i oct | (2) and map(2)

EINVAL
Reguest or argument isinvalid.

ENOMEM
Not enough memory available for DMA buffer reservation.

EXAMPLE { ...
i nt vmedev;

int rc, i;

u_int *uvaddr = NULL;
u_int *cvaddr = NULL;
ioctl _map_t fdnm;

i f ((vredev=open("/dev/vnefdm32d32", O RDWR)) == -1)
{

}

[* initialize the fdma struct */

bzero(&fdma, sizeof(fdma));
fdma.data_size = 0x2000;

fdma.prot = PROT_READ|PROT_WRITE;

perror("open"); .../ ERROR*/

[* allocate some I/O memory */
if (NULL == (uvaddr = vui_fdma_malloc(vmedev, &fdma)))

perror("vui_fdma_malloc"); ... /* ERROR */
}

[* fill the buffer */
cvaddr = uvaddr:
for (i = 0; i < 0x2000; i++)
{
*cvaddr=i:
cvaddr++;
}
[* position the file pointer (VMEbus address) */
Iseek(vmedev, 0x60000000, SEEK_SET);

[* do the write() access */

ﬁﬁ[E Solaris VMEbus Driver Page 57

A SOLECTRON SUBSIDIARY

vimredvima

Application Programmer’s Guide

44 vmedvna

Devices

Routines

rc = wite (vnedev, (void *)fdnma.ioaddr, 0x2000);
if (rc <0
{

}

I* Remove the 1/O buffer */
vui_fdma_free(vmedev, &fdma, uvaddr);
uvaddr = NULL;

close (vmedev);

perror("write"); ... /* ERROR */

The vnedvma driver allows a process to set up and access on-board
memory as VMEbus slave-memory. Accesses from a VMEbus master
are trandated into local-bus addresses, which in turn are mapped to a
DVMA buffer in the on-board memory.

The on-board memory buffer has to be mapped permanently. Therefore,
it can not be allocated by a user process (process memory is paged on de-
mand), but has to be allocated within the kernel address space by the ker-
nel. A process can access the buffer by using the mmap() , r ead(), and
writ e() systemcalls.

The driver provides access to the / dev/ vimedvimaxx devices. The fol-
lowing devices are defined:

/devivmedvma24

/devivmedvma32

/devivmedvma2432

vimedvma24 provides access to the shared memory in A24 space,
vimedvma32 in A32 space and viredvima2432 in both the A24 and the
A32 gpace.

To access this driver the following routines are supported:

* UNIX system calls:open(), cl ose(), nmmap(), nmunmap(),
ioctl(),read(),wite().

* VUl calls:vui _slave_map(),~_unmap() .

Note: Depending on the system ar chitecture, Solaris might not give
the allocated memory back for normal use. Refer to the Release
Notes for further information on allocating shared and DMA
memory for the CPU board under consideration.

Page 58

Solaris VMEbus Driver F\/%[E

204936 9 — 0 January 2000

Application Programmer’s Guide vmedvm

Default behavior ~ For vimedvma write posting is disabled per default. To change the default
behavior use the bus properties which set up the slave window (see
section 6 “VME Bus Properties” on page 159).
If vime_sl ave_di swp_fl ag is set in/ et ¢/ syst em write posting
is always disabled, regardless of other flags or VUI function calls.
Configuration / ker nel / drv/ vmedvma. conf is thevmedvma configuration file.
file It does not contain any configuration options.
Caution Never changethevmedvma configuration file.
441 open(), clos«()
SYNTAX #i ncl ude <sys/types. h>
#i ncl ude <sys/stat.h>
#i ncl ude <fcntl. h>
int open(
const char *path,/* path to device node */
int oflag);/* Open Flags*/
#i ncl ude <uni std. h>
int close(int filds);/* File handl e of opened device */
DESCRIPTION open()
obtains access to a VMEbus device and prepares it for use.
cl ose()
closes a VMEDbus file descriptor associated with a VMEbus device.
Both operations are similar to standaqgen(2) andcl ose(2) . For
further information, see the respective man pages.
RETURN On successful completion, the file descriptor is returned. Otherwise,
VALUES is returned aner r no is set to indicate the error (see tpen(2) and
cl ose(2) man pages).
ERRORS See man pagesonfen(2) andcl ose(2).

A SOLECTRON SUBSIDIARY

Solaris VMEbus Driver Page 59

vimredvima

Application Programmer’s Guide

442

read(), write()

SYNTAX

DESCRIPTION

RETURN

VALUES

ERRORS

#i ncl ude <sys/types. h>

#i ncl ude <uni std. h>

size_t read(
int filds, /* File handl e of opened dev */
void *buf,/* |/O address */
size_t nbyte);/* no. of bytes to transfer */

#i ncl ude <uni std. h>

size_t wite(
int filds,/* File handl e of opened dev */
const void *buf,/* |/O address */
size_t nbyte);/* no. of bytes to transfer */

read()
copies a block of datafrom the local VME shared memory buffer to a
process buffer.

wite()
copies a block of data from a process buffer to the local VME shared
memory buffer.

Theread() andw it e() function callsimplement reading of or writ-
ing to a shared memory buffer previously set up using the viredvima
driver.

The value of the file pointer can beset using | seek() andl | seek().
It must lie within the VMEDbus address range to which a shared memory
buffer has been mapped (within the VME address space identified by the
referenced device node). An error is returned if there is no VME shared
memory mapped to the requested address.

These functions may be used for accessing alocal shared memory buffer
by processes other than the one which set up the mapping.

On successful completion, the number of bytes transferred is returned.
This may be less than the requested amount if the end of the accessed
shared memory buffer is exceeded by the request.

Otherwise, - 1 isreturned and er r no is set to indicate the error (see the
read(2) andw i te(2) man pages).

Seedsotheread(2) andwri t e(2) man pages
EINVAL

Invalid request or argument.

ENXIO
The current setting of the file pointer does not reference aVVMEbus ad-
dress to which a shared memory buffer is mapped to.

Page 60

Solaris VMEbus Driver F\/%[E

204936 9 — 0 January 2000

Application Programmer’s Guide vmedvm

EXAMPLE read() andwrite() canbedemonstrated using the sample programs
shmemand vire__dunp which are located in the exanpl es directory.

1. To start shnmem enter:
shmem -n

2. Enter theinformation you are prompted for, e.g. address space, VME-
bus address, size.

When done, the program reports a VM Ebus address where the shared
memory has been mapped to and reports the syntax to be used for
starting vime_dunp in the next step.

3. Start vime_dunp as reported by shnemin the previous step. In this
second processvire_dunp accesses the shared memory viar ead()
andwri te() calstothebuffer.

443 mmap(), munmap()

SYNTAX #i ncl ude <sys/types. h>

#i ncl ude <sys/mman. h>

caddr _t mmap(
caddr _t addr,/* has to be 0 */
size_t len, /* size of buffer */
int prot, /* protection node */
int flags,/* flags for page handling */
int fildes, /* file handl e opened VME dev */
off _t off);/* kernel virtual address of buffer */

#i ncl ude <sys/types. h>

#i ncl ude <sys/ mman. h>

int munmap(
caddr _t addr,/* usr addr for nmapped VME bl ock */
size_t len);/* block size mapped in bytes */

DESCRIPTION mmap()
alows a previously allocated shared memory buffer to be mapped into
an application’s address space.

munmap()
destroys the mapping for the shared memory buffer.

Theof f parameter identifies a shared memory buffer. It must lie within
the VMEDbus address range to which a shared memory buffer has been
mapped (within the VME address space identified by the referenced de-
vice node). An error is returned if there is no VME shared memory
mapped to the requested address.

This function may be used for accessing a local shared memory buffer by
processes other than the one which set up the mapping.

ﬁﬁ[E Solaris VMEbus Driver Page 61

A SOLECTRON SUBSIDIARY

vimredvima

Application Programmer’s Guide

COMPATIBILI
TY

RETURN
VALUES

ERRORS

444 ioctl()

SYNTAX

DESCRIPTION

VARIABLES

Note. Memory can only be mapped as shared, so the fl ags
argument hasto be set to MAP_SHARED.

The semantic of the of f parameter has been changed with driver release
2.4. Applications which do not take the of f parameter from the kvaddr
element of the i oct| _nmap structure returned by vui _smem map()
may need to be modified.

mrep()
On successful completion, nmap() returns the address at which the
mapping was placed. Otherwise, it returns MAP_FAI LED and sets
er r no to indicate an error (see the mmap(2) man page).

munmap()
On successful completion, the munmap() returns 0. Otherwise, it re-
turns - 1 and sets er r no to indicate an error (see the munmap(2)

man page).

See man pages of mmap(2) and nunmap(2) .

ENXIO
The of f parameter does not reference a VMEbus address to which a
shared memory buffer is mapped to.

#i ncl ude <uni std. h>

#i ncl ude <sys/vne_types. h>

#i ncl ude <sys/vne. h>

#i ncl ude <sys/vui.h>

int ioctl(int fildes, int request, /* arg */ ...);

ioctl()
performs various device-specific control functions on devices. r e-
quest and an optional third argument with varying type are passed to
thefile designated by f i | des and are interpreted by the device driv-
er. For further information see i oct | (2) man pages.

Note: It is strongly recommended to use VUI functions instead of
ioctl ().

dev
file descriptor of an opened VME device

Page 62

Solaris VMEbus Driver F\/%[E

204936 9 — 0 January 2000

Application Programmer’s Guide vmedvm

RETURN
VALUES

ERRORS

request
selects the control function to be performed and depends on the device
being addressed. The following requests are defined:

VME_SLAVE_MAP
VME_SLAVE_UNVAP
VME_SLAVE_SET

For a description of how these requests work see the respective VUI
function (vui _sl ave_map(),...). For examples on how to use
i octl (), see the source code of the VUI functions.

arg
parameter that might be needed by the specified device to perform the
requested function. The data typeasfg depends on the particular
control request, but it is either ant or a pointer to a device-specific
data structure.

On successful completion, the value returned depends on the device con-
trol function, but always is a non-negative integer. Otherwi&eis re-
turned ancer r no is set to indicate the error.

See thieoct | (2) man pages and VUI functions.

445 vui_slave map(), vui_slave_unmap()
SYNTAX #i ncl ude <sys/types. h>
#i ncl ude <sys/ mman. h>
#i ncl ude <sys/vne_types. h>
#i ncl ude <sys/vne. h>
#i ncl ude <sys/vui.h>
caddr _t vui _slave_map (
int dev, ioctl_map_t *dvmm)
int vui_slave_unmap (
int dev, ioctl_map_t *dvma, caddr_t vaddr)
DESCRIPTION vui _slave_map()
sets up a shared memory buffer, makes it accessible from VME and
optionally maps it into the process space.
vui _sl ave_unmap()
destroys the VMEDbus slave window, detaches the buffer from the pro-
cess address space and frees the buffer memory.
The maximum possible size of a shared memory buffer and the probabil-
ity to get a VMEDbus address that reflects the requested one is affected by
several factors:
» the amount of physically present memory,

A SOLECTRON SUBSIDIARY

Solaris VMEbus Driver Page 63

vnedvma Application Programmer’s Guide

» the amount of contiguous kernel address space (which may decrease
during system operation),

* and the amount of contiguous, properly aligned IOMMU address
space (which may also decrease during system operation).

This makes predictions very hard, but as a rule of thumb one can say that
the more physical memory is present and the shorter the run-time of the
system, the larger the possible buffer will be.

All mappings and allocations done for a process will be freed automati-
cally when the device is closed or the process ended.

VARIABLE The structure oct | _map_t is defined invre. h:
TYPES struct ioctl_map
{

uint_t data_size;/* map In: size of buffer */

vheaddr _tvne_addr;/* map I n/Qut: VMEbus address */
caddr _t kvaddr;/* reserved */

ulong_t ioaddr;/* reserved */

bt _t bt;/* map In/CQut: properties of buf. */

i nt prot;/* map In: protection node */

uint_t flags;/* map In: flags how to set up buf. */
vneaddr _tdc_vmeaddr;/* map Qut: Decoded VMEbus address */
size_ t dc_size;/* map Qut: Decoded size */

}
typedef struct ioctl_map ioctl_map_t;
data_si ze

In: size of the shared memory buffer
vire_addr

In: VMEDbus address for the shared memory buffer

Out: resulting VMEbus address of the shared memory buffer. The in-
put address is only a suggestion. The output address is the actually
used address.

Note: Depending on the fl ags argument, the actual VMEbus
address may differ from the requested one. If it differs, this
accomplishes for a VME interface hardware requiring alignments
for which the Solaris DM A mechanism isnot designed.

kvaddr

i oaddr
These elements are reserved for internal use and should neither be
modified nor interpreted in any kind.

bt
In: flag for the bus property. All available flags are defined in
vie_t ypes. h (see section 6 “VME Bus Properties” on page 159).

204936 9 — 0 January

Page 64 Solaris VMEbus Driver I XCE

A SOLEGTRON SUBSIDIARY

Application Programmer’s Guide vmedvm

They can be logically OR-ed. See the Release Notes for flags which
arerelevant for the CPU board under consideration.

Out: flags which actually are used.

pr ot
In: The protection mode is the same as used by nrap(2) :

PROT_READ Buffer can be read.
PROT_VWRITE Buffer can be written.

PROT_NONE Buffer can not be accessed.

flags
Flags that affect the way how the shared memory is set up:

SMEM_PADDR reserved for future extensions, currently unused.

SMEM_VADDR If this flag is set, the standard method of setting
up the shared memory buffer is used.
Due to hardware limitations, the VMEbus ad-
dress to which the shared memory is actually
mapped might differ from the requested one. Re-
fer to the Release Notes for information on ad-
dress offsets which are to be expected for the
hardware under consideration.
Currently this flag must be set. It may be com-
bined with the flags described below.

SMEM _FI XED If this flag is set, the VMEDbus nexus driver sets
up the shared memory at exactly the requested
VMEDbus address, provided that the requested
VMEDbus address is aligned to page boundary.
The decoded VMEDbus address range might be
larger than the shared memory address range.
Using this flag might fragment system resources
more than not using the flag.
See the Release Notes whether this flag is sup-
ported for the CPU board under consideration.

SMEM DONTMAP Set up the shared memory and map it to VME,
but don’t map it to the process address space. In
this case, the only way to access the buffer local-
ly is to use the ead() andwri t e() interface.

dc_vneaddr,dc_si ze
Out: When setting up the VME slave window needed to access the on-
board memory, it may be necessary to set up alarger window than the
requested one. The address range of the actually used window is re-

ﬁﬁ[E Solaris VMEbus Driver Page 65

A SOLECTRON SUBSIDIARY

vimredvima

Application Programmer’s Guide

COMPATIBILI
TY

VARIABLES

RETURN
VALUES

ERRORS

ported by dc_vrneadd and dc_si ze. The VMEbus interface chip
responds to all master accesses within this range, so make sure that it
does not conflict with other bus participants.

The semantic of thekvaddr andi oaddr elements hasbeen changed
with driver version 2.4. Applications that use these values for any oth-
er purposes or modify these values may need to be changed.

Variablesforvui _sl ave_nmap():
dev
file descriptor of an opened VME device

*dvma
pointer to mapping structure

Variablesfor vui _sl ave_unmap() :
dev
file descriptor of an opened VME device

*dvma
pointer to mapping structure

vaddr
Virtual address of the slave memory buffer which has been returned by
vui _slave_map() . This parameter is ignored if the request flag
SMEM _DONTMAP is set.

vui _sl ave_map()
This function returns O if an error occurred and er r no is set. On suc-
cess, it returns avirtual address where the slave memory can be access-
ed.

If the request flag SMEM DONTMAP has been s,
vui _sl ave_map() returns SMEM_MAPPED to indicate success.

vui _sl ave_unmap()
On successful completion, VUl _OK is returned. Otherwise,
VUl _FAI L isreturned and er r no is set to indicate the error.

See also ioctl(2) man pages

EAGAIN
At the time of execution the action cannot be done, e.g. because no re-
sources are available.

EFAULT
Offset, size, or alignment are erroneous.

EINVAL
Invalid request or argument.

Page 66

Solaris VMEbus Driver F\/%[E

204936 9 — 0 January 2000

Application Programmer’s Guide vmedvm

EXAMPLE

ENOMEM

Possible causes:

— The composite size aflvia. dat a_si ze plus the lengths of all
previous mappings viamap() exceedsRLI M T_VMEM (see the
man pages ajetrlimt(2)).

— Not enough I/O memory available for the mapping.

ENOTSUP

{

Action not supported.

ioctl _map_t dvnm;

int fd;
char *buf p;
int i;

if (-1 == (fd = open("/dev/vnedvma24", O RDWR)))
{

}
[* allocate and map 1 MB, give VMEbus address 0 as hint.

* enable write posting. */
dvma.data_size = 0x100000;

perror("open"); ... [* ERROR */

dvma.vme_addr = 0xO0;
dvma.flags = SMEM_VADDR,;
dvma.bt =VME_BT_WP;

bufp = (char*)vui_slave_map(fd, &dvma);
if (bufp == NULL)

perror("vui_slave_map"); ... /* ERROR */
}

[* report values */

printf("--> Slave window at VME 0x%x\n",
(u_int)dvma.vme_addr);

printf("--> Decoded slave range: 0x%x + 0x%x\n",
(u_int)dvma.dc_vmeaddr,
(u_int)dvma.dc_size);

wait for someone to write data to the buffer

[* print some bytes */
for (i=0;i< 16; i++)

printf("%02x ", (int)(bufp[i])&Oxff);
printf(“\n”);
[* destroy the slave memory and unmap it */
printf("-> Unmapping buffer...");
vui_slave_unmap(fd, &dvma, bufp);

close(fd);

ﬁﬁ[E Solaris VMEbus Driver Page 67

A SOLECTRON SUBSIDIARY

viect |

Application Programmer’s Guide

45 vnectl

Devices

Routines

Configuration
file

451 open(), clos«()

SYNTAX

The vmect | driver provides various control and debug options. It aso
supports mailboxes and hardware signalslikeabor t , sysf ai | orac-

f ai | . Furthermore, it can be used to obtain information about the CPU
board and the VME interface chip used.

The driver provides accessto the/ dev/ vimect | device.

To access this driver the following routines are supported:

» UNIX System callsopen(),cl ose(),ioctl ().

e VUI calls:

vui _abort_wait(),~_signal (),
vui _acfail_wait(),~_signal (),
vui _arb_node_set (),~_get (),

vui _board(),

vui _bus_rel node_set(),~_get (),
vui _bus_req_ | evel _set(),~ _get(),
vui _bus_req_node_set(),~_get (),

vui _interface(),
vime_i ntr_generate(),

vui _mbox_info(), ~_set(),~_renove(),~wait(),
vui _reg_base_set(),~_get(),
vui _reg_read(),~_wite(),

vui _reset(),

vui _sysfail _assert,~_deassert,
vui _(n)sysfail _wait(),~_signal ().

[/ kernel /drv/vmect!| . conf is thevrmect| configuration file. It
contains one configuration option which controls the behavior of
vui _acfail_wait(), ~_signal (), vui_sysfail_wait(),
~_signal (), vui _nsysfail _wait(), and ~_signal (). For
further information refer to the respective commentriect | . conf .

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat.h>
#i ncl ude <fcntl. h>

int open(

const char *path,/* path to device node */
int oflag);/* Open Flags*/

#i ncl ude <uni std. h>

int close(int filds);/* File handl e of opened device */

Page 68

Solaris VMEbus Driver F\/%[E

204936 9 — 0 January 2000

Application Programmer’s Guide vnect |

DESCRIPTION

RETURN
VALUES

ERRORS

45.2 ioctl()

SYNTAX

DESCRIPTION

VARIABLES

open()
obtains access to aVMEDbus device and prepares it for use.

cl ose()
closes a VMEbus file descriptor associated with a VMEbus device.

Both operations are similar to standard open(2) and cl ose(2) . For
further information, see the respective man pages.

On successful completion, the file descriptor is returned. Otherwise, - 1
isreturned and er r no is set to indicate the error (see the open(2) and
cl ose(2) man pages).

Seetheopen(2) andcl ose(2) man pages

#i ncl ude <uni std. h>

#i ncl ude <sys/vne_types. h>

#i ncl ude <sys/vne. h>

#i ncl ude <sys/vui.h>

int ioctl(int fildes, int request, /* arg */ ...);

ioctl()
performs various device-specific control functions on devices. r e-
quest and an optional third argument with varying type are passed to
the file designated by f i | des and are interpreted by the device driv-
er. For further information seethei oct | (2) man pages.

Note: It is strongly recommended to use VUI functions instead of
ioctl ().

dev
file descriptor of an opened VME device

request
selects the control function to be performed and depends on the device
being addressed. The following requests are defined:

VME_REG READ
VME_REG WRI TE
VME_REG BASE_SET
VME_REG BASE GET
VME_ARB_NMODE_SET
VME_ARB_NMODE_GET
VME_BRL_SET
VME_BRL_GET
VME_BRM SET

ﬁﬁ[E Solaris VMEbus Driver Page 69

A SOLECTRON SUBSIDIARY

vnect | Application Programmer’s Guide

VME_BRM GET
VME_BREL_SET
VME_BREL_GET
VME_| NTR_GENERATE
VMVE_MBOX_SET
VMVE_MBOX_GET
VVE_MBOX_ENABLE
VMVE_MBOX_DI SABLE
VMVE_MBOX_WAI T
VMVE_BOARD

VME_| NTERFACE
VMVE_ABORT | NTR
VME_ACFAI L_I NTR
VME_SYSFAI L_I NTR
VMVE_RESET

For a description of how these requests work see the respective VUI
function (vui _reg_read(),...). For examples how to use-
ctl (), see the source code of the VUI functions.

arg
parameter that might be needed by the specified device to perform the
requested function. The data typeasfg depends on the particular
control request, but it is either ant or a pointer to a device-specific
data structure.

RETURN On successful completion, the value returned depends on the device con-
VALUES trol function, but always is a non-negative integer. Otherwi&eis re-
turned ancer r no is set to indicate the error.

ERRORS See thieoct | (2) man pages

453 vui_abort_signal(), vui_abort_wait()

SYNTAX #i ncl ude <sys/vne_types. h>
#i ncl ude <sys/vne. h>
#i ncl ude <sys/vui.h>
int vui_abort_signal (int dev, int signal)
int vui_abort_wait (int dev)

DESCRIPTION vui _abort _signal ()
sets the signal which shall be sent to the user application when the
front-panel abort key is triggered.

vui _abort_wait()
waits for the abort key to be triggered.

VARIABLES Variables forvui _abort _si gnal ():
dev
file descriptor of an opened VME device

204936 9 — 0 January 2000

Page 70 Solaris VMEbus Driver I XCE

A SOLEGTRON SUBSIDIARY

Application Programmer’s Guide vnect |

RETURN
VALUES

ERRORS

EXAMPLE 1

si gnal
signal to be sent to the user application when the front-panel abort key
istriggered. If set back to 0, sending the signal is stopped.

Variablesfor vui _abort_wait():
dev
file descriptor of an opened VME device

Note: Not all signals can be sent to an application. For a list of
possible signals, seethepr oc_si gnal (9F) man pages.

On successful completion, VUl _OK is returned by both functions. Other-
wise, VUl _FAI L isreturned and er r no is set to indicate the error.

Seedsoi oct| (2) man pages

EAGAIN
At the time of execution the action cannot be done, e.g. because no re-
sources are available.

ECANCELED
A timeout occurred.

EINTR
The process has been interrupted by a signal while waiting.

EINVAL
Invalid request or argument, or no more ranges are available.

ENOTSUP
Action not supported.

{ i nt vnedev;
i. f . ((vredev=open("/dev/vnectl", O RDWR)) == -1)
{ perror("open"); ... /* ERROR */
3* wait for the ABORT switch to be triggered */
vui_abort_wait (vmedev);
.(;}oid)close(vmedev);
}

SOLECTRON SUBSIDIARY

ﬁﬁ[E Solaris VMEbus Driver Page 71

viect |

Application Programmer’s Guide

EXAMPLE 2

{
int vnedev;
if ((vredev=open("/dev/vnectl", O RDWR)) == -1)
{
perror("open"); .../ ERROR*/
}

[* prepare a signal to be sent when the ABORT switch is
triggered */

sigset (SIGINT, aborthdl);

vui_abort_signal(vmedev, SIGINT);

vui_abort_signal(vmedev, 0);
(void)close(vmedev);

454 vui_acfail_signal(), vui_acfail_wait()

SYNTAX

DESCRIPTION

VARIABLES

#include <sys/vme_types.h>

#include <sys/vme.h>

#include <sys/vui.h>

int vui_acfail_wait (int dev)

int vui_acfail_signal (int dev, int signal)

vui _acfail _wait()
waits for the VME ACFAIL* to be asserted.

vui _acfail _signal ()
sets the signal which shall be sent to the user application when VME
ACFAIL* is asserted.

Variablesforvui _acfail _wait():
dev
file descriptor of an opened VME device

Variablesfor vui _acfail _signal ():
dev
file descriptor of an opened VME device

si gnal
signal to be sent to the user application when VME ACFAIL* is as-
serted. By default thevmect | driver is configured to detect only tran-
sitions of the ACFAIL linefrom high to low, but not the current state of
the ACFAIL line. This behavior can be changed by modifying the driv-
er configuration file. For further information refer to the respective
commentinviect | . conf .

If set back to 0, sending the signal is stopped.

Page 72

Solaris VMEbus Driver F\/%[E

204936 9 — 0 January 2000

Application Programmer’s Guide vnect |

Note: Not all signals can be sent to an application. For a list of
possible signals, seethepr oc_si gnal (9F) man page.

RETURN On successful completion, VUI _ OK is returned. Otherwise, VUl _FAl L
VALUES isreturned and er r no is set to indicate the error.
ERRORS Seealsoi oct | (2) man pages

EAGAIN

At the time of execution the action cannot be done, e.g. because anoth-
er processisusing the ACFAIL functions.

ECANCELED
A timeout occurred.

EINTR
The process has been interrupted by a signal while waiting.

EINVAL
Invalid request or argument, or no more ranges are available.

ENOTSUP
Action not supported.

EXAMPLE 1 {
int vnedev;
if ((vmedev=open("/dev/vnectl", O RDWR)) == -1)
{

}
[* wait for the ACFAIL to be triggered */

vui_acfail_wait (vmedev);

perror("open"); .../ ERROR*/

(void)close(vmedev);

EXAMPLE 2 {
int vmedev;

if (vmedev=open("/devivmectl", O_RDWR)) == -1)
{

}

perror(“open"); ... [* ERROR */

[* prepare a signal to be sent when ACFAIL is triggered */
sigset(SIGINT, acfail_hdl);

vui_acfail_signal(vmedev, SIGINT);
vui_acfail_signal(vmedev, 0);

(void)close(vmedev);

ﬁﬁ[E Solaris VMEbus Driver Page 73

A SOLECTRON SUBSIDIARY

viect |

Application Programmer’s Guide

455 wvui_arb_mode _set(), vui_arb_mode get()

SYNTAX

DESCRIPTION

VARIABLE

RETURN
VALUES

#i ncl ude <sys/vne_types. h>

#i ncl ude <sys/vne. h>

#i ncl ude <sys/vui.h>

int vui_arb_node_set (int dev, int arb)
int vui_arb_node_get (int dev, int *arb)

vui _arb_node_set ()
sets the arbitration mode of the local VMEbus arbiter.

vui _arb_node_get ()
returns the arbitration mode the local VMEbus arbiter is currently run-
ningin.

Variablesfor vui _arb_node_set () :
dev
file descriptor of an opened VME device

arb
can have the following values:

VME_ARB_SGL single level arbiter on level 3

VME_ARB_RR round robin arbiter

VME_ARB_PRI priority arbiter with level 3 being the highest pri-
ority level

VME_ARB_PRI RR priority round robin arbiter

VME_ARB_OFF the board is not system controller (slot-1 device)

The values are defined in vime_t ypes. h. The arbitration mode can
not be set or requested if the local CPU board is not the VMEbus sys-
tem controller (VMEbus slot 0).

Variablesforvui _arb_node_get () :
dev
file descriptor of an opened VME device

*arb
pointer to the current arbitration mode. The current arbitration modeis
returned within this pointer. For possible arbitration modes see above.

On successful completion, VUI _OKisreturned. Otherwise, e.g. if CPU is
not arbiter, VUl _FAI L isreturned and er r no is set to indicate the error.

Page 74

Solaris VMEbus Driver F\/%[E

204936 9 — 0 January 2000

Application Programmer’s Guide vnect |

ERRORS

EXAMPLE

456 vui_board()

SYNTAX

DESCRIPTION

VARIABLES

RETURN
VALUES

ERRORS

Seealsoi oct | (2) man pages
EINVAL
Invalid argument.

ENOTSUP
Action not supported.

{ ...
i nt vmedev;
int arb;
if ((vredev=open("/dev/vrectl", O RDWR)) == -1)
{
perror("open™); ... I* ERROR */
}

vui_arb_mode_set(vmedev, VME_ARB_PRIRR);
vui_arb_mode_get(vmedev, &arb);

(void)close(vmedev);

#include <sys/vme_types.h>

#include <sys/vme.h>

#include <sys/vui.h>

int vui_board(
int dev,
char *name,/* board name max. 32 char */
short *rel);/* release */

vui _board()
returns the CPU board’s name and the LCA revision.

dev
file descriptor of an opened VME device

*name
pointer to a buffer, the CPU board’s name is copied to

*rel
pointer to the revision number

On successful completioWUl _ K is returned. Otherwis&/Ul _FAIl L
is returned anér r no is set to indicate the error.

Seeoct! (2) man pages

ﬁﬁ[E Solaris VMEbus Driver Page 75

A SOLECTRON SUBSIDIARY

viect |

Application Programmer’s Guide

EXAMPLE

{
int fd;
int id;
char name[32];

if (-1 == (fd = open("/dev/vnectl", ORDWR)))

{
perror("open"); ... [* ERROR */
.. I* ERROR */}

if (-1 == vui_board(fd, name, &id))
{

}

perror("vui_board"); ... /* ERROR */

printf("-> Board name: %s\n", name);
printf("-> Board rev.: %d\n", (int)id);

4.5.7 vui_bus rel_mode_set(), vui_bus rel_mode_get()

SYNTAX

DESCRIPTION

VARIABLES

#include <sys/vme_types.h>

#include <sys/vme.h>

#include <sys/vui.h>

int vui_bus_rel_mode_set (int dev, int brel)
int vui_bus_rel_mode_get (int dev, int *brel)

vui _bus_rel node_set ()
sets the VM Ebus rel ease mode for future master accesses.

vui _bus_rel _node_get ()
returns the current release mode.

Variablesforvui _bus_rel node_set():
dev
file descriptor of an opened VME device

brm
specifies the VMEDbus release mode, defined invime_t ypes. h:

VME_BRL_ROR Release on request
VME_BRL_ROC Release on clear
VME_BRL_RAT Release after timeout

VME_BRL_RWD Release when done

Page 76

Solaris VMEbus Driver F\/%[E

A SOLEGTRON SUBSIDIARY

204936 9 — 0 January 2000

Application Programmer’s Guide vnect |

458

RETURN
VALUES

ERRORS

EXAMPLE

Variablesfor vui _bus_rel _node_get () :
dev
file descriptor of an opened VME device

*brm
pointer to the current VMEbus release mode. This pointer returns the
current release mode. For possible values of the release mode see
above.

On successful completion, VUI _ OK is returned. Otherwise, VUl _FAl L
isreturned and er r no is set to indicate the error.

Seeadsoi oct| (2) man pages

EINVAL
Invalid argument.

ENOTSUP
Action not supported.

{
|nt viredev;
int brel;
i f ((vmedev=open("/dev/vrectl", O RDWR)) == -1)
{ perror("open™); ... I* ERROR */
}

vui_bus_rel_mode_set(vmedev, VME_BRL_ROR);
vui_bus_rel_mode_get(vmedev, &brel);
printf("->bus release mode: %d\n", brel);

(void)close(vmedev);

vui_bus_req_level_set(), vui_bus req_level_get()

SYNTAX

DESCRIPTION

#include <sys/vme_types.h>

#include <sys/vme.h>

#include <sys/vui.h>

int vui_bus_req_level_set (int dev, int brl)
int vui_bus_req_level_get (int dev, int *brl)

vui _bus_req_Il evel _set ()
sets the bus request level at which al future master accesses will be
performed.

vui _bus_req_Il evel _get ()
returns the current bus request level.

ﬁﬁ[E Solaris VMEbus Driver Page 77

SOLECTRON SUBSIDIARY

viect |

Application Programmer’s Guide

VARIABLE

RETURN
VALUES

ERRORS

EXAMPLE

Variablesfor vui _bus_req_Il evel _set ():
dev
file descriptor of an opened VME device

brl
bus request level: 0 to 3

Variablesforvui _bus_req_| evel get():
dev
file descriptor of an opened VME device

*br
pointer to bus request level. This pointer returns the current bus request
level. Possible values are O to 3.

On successful completion, VUl _OK is returned. Otherwise, VUl _FAI L
isreturned and er r no is set to indicate the error.

Seeadsoi oct| (2) man pages

EINVAL
Invalid request or argument, or no more ranges are available.

ENOTSUP
Action not supported.

{
|nt viredev;
int brl;
i f ((vmedev=open("/dev/vrectl", O RDWR)) == -1)
{ perror(“open"); ... /* ERROR */
}

vui_bus_req_level_set(vmedev, 2);
vui_bus_req_level_get(vmedev, &brl);
printf("->bus request level: %d\n", brl);

(void)close(vmedev);

Page 78

Solaris VMEbus Driver F\/%[E

204936 9 — 0 January 2000

Application Programmer’s Guide vnect |

459 vui_bus req_mode_set(), vui_bus _req_mode get()

SYNTAX #i ncl ude <sys/vme_types. h>
#i ncl ude <sys/vne. h>
#i ncl ude <sys/vui.h>
int vui_bus_req_node_set (int dev, int brm
int vui_bus_req_node_get (int dev, int *brm

DESCRIPTION vui _bus_req_node_set ()
sets the VMEDbus request mode for future master transfers.

vui _bus_req_node_get ()
returns the current VM Ebus request mode.

VARIABLES Variablesforvui _bus_req_node_set ():
dev
file descriptor of an opened VME device

brm
specifies the VMEbus request mode, defined invime_t ypes. h:

VME_BRQ_FAI R fair request mode

VME_BRQ_DEMAND demand request mode

Variablesfor vui _bus_req_node_get () :
dev
file descriptor of an opened VME device

*brm
pointer to the VMEDbus request mode. This pointer returns the current
bus request mode. For possible values see above.

RETURN On successful completion, VUI _ K is returned. Otherwise, VUl _FAl L
VALUES isreturned and er r no is set to indicate the error.
ERRORS Seealsoi oct | (2) man pages
EINVAL
Invalid request or argument, or no more ranges are available.
ENOTSUP

Action not supported.

A SOLECTRON SUBSIDIARY

ﬁﬁ[E Solaris VMEbus Driver Page 79

viect |

Application Programmer’s Guide

EXAMPLE

4.5.10 vui_interface()

SYNTAX

DESCRIPTION

VARIABLES

RETURN
VALUES

ERRORS

EXAMPLE

{
|nt vnedev;
int brm
if ((vredev=open("/dev/vnectl", O RDWR)) == -1)
{ perror("open"); ... /* ERROR */
}

vui_bus_req_mode_set(vmedev, VME_BRQ_FAIR);
vui_bus_req_mode_get(vmedev, &brm);
printf("->bus request mode: %d\n", brm);

(void)close(vmedev);

#include <sys/vme_types.h>

#include <sys/vme.h>

#include <sys/vui.h>

int vui_interface(
char *name,/* name string, max. 32 char */
short *rev);/* LCA revision */

vui _interface()
returns the interface name and the LCA revision.

dev
file descriptor of an opened VME device

name
pointer to a buffer, the interface name is copied to

rev
pointer to the revision number

On successful completion, VUI _OK is returned by all functions. Other-
wise, VUl _FAI L isreturned and er r no is set to indicate the error.

Seei oct | (2) man pages

{
int fd;
int id;
char name[32];

if ((fd=open("/devivmectl", O_RDWR)) == -1)
{

}

perror(“open"); ... [* ERROR */

Page 80

Solaris VMEbus Driver F\/%[E

A SOLEGTRON SUBSIDIARY

204936 9 — 0 January 2000

Application Programmer’s Guide vnect |

if (-1 == vui_interface(fd, nane, & d))

{
}

perror("vui_interface"); ... * ERROR */

printf("-> Interface name: %s\n", name);
printf("-> Interface rev.: %d\n", (int)id);

close (fd);

4511 vui_intr_generate()

SYNTAX

DESCRIPTION

VARIABLE
TYPES

VARIABLES

#include <sys/vme_types.h>

#include <sys/vme.h>

#include <sys/vui.h>

int vui_intr_generate (int dev, ioctl_irg_t *intr)

vui _intr_generate()
triggers VMEbus interrupts. The function waits at most 1 second (un-
interruptable) for the interrupt to be acknowledged, otherwise an error
isreturned.

Note: The generation of interrupts is hardware dependent.
Therefore, refer to the Release Notes whether this feature is
supported on the CPU board under consideration.

Thestructurei oct!| _irqg_t isdefinedinvre. h:
struct ioctl_irq

{
int prop; /* not needed here*/
int sig; /* not needed here*/
int level; /* VMEbus interrupt level */
int vector; /* VMEbus interrupt vector */
h

typedef struct ioctl_irq ioctl_irg_t;
| evel
interrupt level to betriggered: 1 ... 7
vect
interrupt vector to be triggere@:..255
dev
file descriptor of an opened VME device

intr
points to interrupt definition structure.

ﬁﬁ[E Solaris VMEbus Driver Page 81

A SOLECTRON SUBSIDIARY

viect |

Application Programmer’s Guide

RETURN

VALUES

ERRORS

EXAMPLE

On successful completion, VUl _OK is returned. Otherwise, VUl _FAI L
isreturned and er r no is set to indicate the error.

Seedsoi oct| (2) man pages
EACCES

The/ dev/ vimect | device was not opened for write access.

EAGAIN
The interrupt could not be generated because another interrupt trig-
gered by thelocal CPU on thislevel is not acknowledged yet.

ECANCELED
The lACK cycle did not finish within one second.

EINVAL
Invalid request or argument.

{

int vnedev;

ioctl _irqg_t intr;

int retry;

int error = 1;

if ((vredev=open("/dev/vnectl", O RDWR)) == -1)

{
perror("open");
exit(1);

}

intr.level = 5;

intr.vect = 0x5c;

/* Attenpt to send interrupt. Retry ten tines.
*/
for (retry = 0; retry < 10; retry++)
{
if (vui_intr_generate(vnedev, & ntr) == VU _K);
{
/* Success. Exit retry |l oop
*/
error = 0;
br eak;
}
if (errno == ECANCELED)

{

/* Timeout after interrupt was sent.Mybe
the interrupt handler is very busy. It
m ght also be a hardware failure.

Exit retry | oop.

/

error = 0;

fprintf(stderr, "I ACK timed out\n");
br eak;

* 0% X X X

Page 82

Solaris VMEbus Driver F\/%[E

A SOLEGTRON SUBSIDIARY

204936 9 — 0 January 2000

Application Programmer’s Guide vnect |

else if (errno != EAGAIN)

{
/* fatal error
*/
perror("vui _intr_generate");
br eak;
}

fprintf(stderr,
"ddIRQstill pending, retrying\n")

}

if (error)

{
fprintf(stderr, "Error sending interrupt\n")
exit(1);

}

(void)cl ose(vredev) ;

}
4.5.12 vui_mbox_info()
SYNTAX #i ncl ude <sys/vne_types. h>

#i ncl ude <sys/vne. h>
#i ncl ude <sys/vui.h>
int vui_nbox_info (int dev, ioctl_nbox_info_t *nbox)

DESCRIPTION vui _nbox_i nfo()
returns information about the mailbox capabilities and the current allo-
cation status.

Mailboxes are resources in the VMEbus bridge which trigger a local
interrupt when being accessed from the VMEbus.

VARIABLE The structurei oct | _nbox_i nfo_t isdefinedinvme. h:
TYPES struct ioctl_nbox_info
{
i nt nmbox; /* no. of mail boxes */
i nt nrmbox_i nuse; /* mail boxes in use */
bt _t nmbox_bt;/* avail. bus prop. */

vneaddr _t nbox_of f set _def;/* address offset */
vneaddr _t nhox_of fset _mask;/* address mask */
uint _t nbox_access;/* access nethod(s) */

I

typedef struct ioctl_mbox_info ioctl_nbox_info_t;
nmbox
total number of available mailboxes.

nnmbox_i nuse
number of mailboxesin use.

ﬁﬁ[E Solaris VMEbus Driver Page 83

A SOLECTRON SUBSIDIARY

vnect | Application Programmer’s Guide

nbox_bt
VMEDbus properties for the available mailboxes (see section 6 “VME
Bus Properties” on page 159).

nbox_of f set _mask
A bit mask that denotes the address bits which are compared by the
hardware for detecting a mailbox access.

nbox_of f set _def
an offset from a VMEbus address which is aligned to
nbox_of f set _mask. The resulting address is the address where the
mailbox is accessible. This offset usually results from the fact that
mailboxes are in fact registers in the VMEbus bridge hardware which
are made accessible from VME. In this case, the mask results from the
setting/alignment of the register access image and the offset from the
mailbox register within the complete register set.

nbox_access
specifies the kind of access which triggers a mailbox interrupt:

VME_MB_RD trigger by read access.
VMVE_MB_WR trigger by write access.
VME_MB_RDVWR trigger by both read or write access.

VARIABLES dev
file descriptor of an opened VME device

nmbox
points to mailbox definition structureoct | _nbox_i nfo_t

RETURN On successful completionful _OK is returned and the ioctl_mbox_t
VALUES structure is filled with the known values. Otherwis&ll _FAI L is re-
turned ancer r no is set to indicate the error.
ERRORS See aldooct | (2) man pages
ENOTSUP

Hardware does not support mailboxes.

4.5.13 vui_mbox_set(), vui_mbox_remove()

SYNTAX #i ncl ude <sys/vme_types. h>
#i ncl ude <sys/vne. h>
#i ncl ude <sys/vui.h>
int vui_nbox_set (int dev, ioctl_mnbox_t *mbox);
int vui_nmbox_renove (int dev, int mbox_num;

204936 9 — 0 January 2000

Page 84 Solaris VMEbus Driver F\/%[E

A SOLEGTRON SUBSIDIAS

Application Programmer’s Guide vnect |

DESCRIPTION

VARIABLE
TYPES

vui _nmbox_set ()

alocates a mailbox for use by the calling process. A mailbox may be
operated in 2 modes:

In "buffered mode", the mailbox behaves like a semaphore counting a
mailbox access counter. The access counter is increased upon each
access (V operation), and decreased when a process issues a wait
operation (P operation).

A buffered mailbox can be in state "disabled”, i.e. the counter is not
increased by an access, or "enabled”. After a mailbox has sucessfully
been initialized byvui _nbox_set (), it is disabled. It can be
enabled by calling vui _nmbox_wait () or

vui _mbox_control ().

In "non-buffered” mode, the mailbox is enabled if and only if a pro-
cess is waiting for it. Intermediate accesses to the mailbox have no
effect.

vui _nbox_renove()

releases (destroys) a mailbox.

The mailbox request structurect | _nbox_t is defined invne. h:
struct ioctl_nbox

{

}

i nt nmbox_num /* Qut: Milbox id */

vneaddr _t mbox_addr;/* Qut: VMEbus address */

bt _t nbox_vne_space;/* In/Qut: VME properties */
vneaddr _tnbox_vne_mn;/* In: |ow nbox addr. */
vneaddr _t nbox_vne_mex;/* |In: upper nbox addr. */
uint _t mnbox_access;/* In/CQut: nmail box nodes */

typedef struct ioctl_mbox ioctl_mbox_t;

nbox_num

vui _nbox_set () sets this value to the ID of the allocated mailbox.

nbox_addr

Gets set with the VMEbus address of the allocated mailbox.

vVe_space

This bit set specifies the VMEbus bus properties of a requested mail-
box (see section 6 “VME Bus Properties” on page 159).

Upon successful returrvime_space contains the actual VME bus
properties of the allocated mailboxes. All property bits set in the re-
guest are guaranteed to be satisfiad. _nbox_set () might set ad-
ditional properties if hardware requires it.

vui _nmbox_set () returns an error if property bits are set which can
not be satisfied by hardware.

ﬁﬁ[E Solaris VMEbus Driver Page 85

A SOLECTRON SUBSIDIARY

viect |

Application Programmer’s Guide

VARIABLES

RETURN
VALUES

ERRORS

nbox_vme_mi n, nmbox_vme_max
Defines a lower and inclusive upper address boundary for a mailbox
request. vui _nbox_set () returns an error if it is not possibleto allo-
cate a mailbox within this address range.

nbox_access
specifies further properties of the mailbox to be all ocated:

VME_MB_RD, or Mailbox istriggered upon reading, writing to its
address (or both) respectively.
Not setting these flags is valid (a default value
VME_MB_RDVR will be selected and returned).

VME_MB_BUFFER Indicates that the mailbox shall be requested in
buffered mode. If this flag is not set, the mail-
box is requested in non-buffered mode.

VME_MB_WR, or

Upon successful return, vui _nmbox_set () returns the actual access
type(s) in mbox_access. If set, access types VME_MB_RD, ~WR and
~RDWR are guaranteed to remain valid, but they might get extended
(e.g. if read access was requested, a mailbox might be triggered by
read and write accesses). If a specified access mode cannot be granted,
an error is returned.

Variablesfor vui _nmbox_set () :
dev
file descriptor of an opened vmectl device

*mbox
points to mailbox definition structure.

Variablesfor vui _nmbox_renove() :
dev
file descriptor of an opened vmectl device

nmbox_num
mailbox-1D which has been returned in the mailbox definition struc-
tureby vui _nbox_set ()

On successful completion, VUl _OK is returned. Otherwise, VUl _FAI L
isreturned and er r no is set to indicate the error.

Seedsoi oct| (2) man pages

EAGAIN
At execution time the action cannot be done, e.g. because no resources
are available.

EINVAL
Invalid request or argument.

Page 86

Solaris VMEbus Driver F\/%[E

204936 9 — 0 January 2000

Application Programmer’s Guide vnect |

ENOTSUP
Action not supported.

EXAMPLE {
int fd;
i octl _mbox_t nbox;
i.%.(-l == (fd = open("/dev/vnectl", ORDW\R)))
{
perror("open"); ... [* ERROR */
}

mbox.mbox_vme_space=VME_BT_A16 | VME_BT_DS§;
mbox.mbox_vme_min=0;

mbox.mbox_vme_max=0xffff;
mbox.mbox_access=VME_MB_BUFFER,;

if (-1 == vui_mbox_set(fd, &mbox))
{

}

printf("--> Mailbox id: ~ %d\n", mbox.mbox_num);

printf("--> Mailbox address: 0x%x\n",
(u_intymbox.mbox_addr);

printf("--> Mailbox access: 0x%x\n", mbox.mbox_access);

perror("vui_mbox_set"); ... /* ERROR */

close(mbox);

4.5.14 vui_mbox_wait()

SYNTAX #include <sys/vme_types.h>
#include <sys/vme.h>
#include <sys/vui.h>
int vui_mbox_wait (int dev, int mboxnum)

DESCRIPTION vui _mbox_wait ()
Waits for a mailbox being accessed. The exact behavior depends on
whether the mailbox has been initialized in buffered or non-buffered
mode (see “vui_mbox_set(), vui_mbox_remove()” on page 84).
If the mailbox is operated in buffered mode and it has not yet been en-
abled by vui_mbox_control(), it will automatically be enabled by the
vui_mbox_wait() call.

VARIABLES dev
file descriptor of an opened VME device
nmboxnum
mailbox ID — set when returning fromui _nbox_set ()

RETURN On successful completioWUl _ K is returned. Otherwis&/Ul _FAIl L
VALUES is returned aneér r no is set to indicate the error.

ﬁﬁ[E Solaris VMEbus Driver Page 87

A SOLECTRON SUBSIDIARY

viect |

Application Programmer’s Guide

ERRORS

Seealsoi oct !l (2) man pages

EINVAL
Invalid request or argument.

EAGAI N
Another process is already waiting at the specified mailbox. This is
currently not supported.

ENOSPC
The mailbox is used in buffered mode and an overflow of the mailbox
counter has occured. If this happens, the mailbox is automaticaly dis-
abled. Usethe vui_mbox_control() function to reset its state.

4.5.15 vui_mbox_control()

SYNTAX

DESCRIPTION

VARIABLES

Table4

#i ncl ude <sys/vne_types. h>

#i ncl ude <sys/vne. h>

#i ncl ude <sys/vui.h>

int vui_nbox_control (int dev, int nboxnum int ctlop,
caddr _t arg);

This function performs various control operations on a mailbox which
has been initialized by vui _nbox_set ().
dev

file descriptor of an opened vmectl device

nmboxnum
mailbox ID — set when returning fromui _nbox_set ()

ctlop, arg

Defines the control operation and an argument to the control operation:

Mailbox Control operations

ctlop arg Description

VUl _MBOX_ENA 0 Enables a mailbox. This has
no effect if the mailbox is
already enabled.

VUl _MBOX_RESET | Resets the mailbox counter
to zero and enables the
mailbox.

Page 88

Solaris VMEbus Driver F\/%[E

204936 9 — 0 January 2000

Application Programmer’s Guide vnect |

Table 4 Mailbox Control operations (cont.)

ctlop arg Description

VUl _MBOX_DI SA 0 Disables a buffered mail-
box. Further accesses will
not increase the mailbox
counter.

VUl _MBOX_CNTGET | int *cntr Stores the current value of
the mailbox access counter
in *cntr. The counter is not
altered.

The control operations VUl _MBOX_ENA, VUl _MBOX_DI SA and
VUl _MBOX_CNTGET are only valid on buffered mailboxes.

In case of a mailbox counter overflow detected by vui _nbox_wai t (),
the counter can be reset by a VU _MBOX _ENA/VUI _MBOX_ RESET
control operation/argument.

RETURN On successful completion, VUl _OK is returned. Otherwise, VUl _FAI L
VALUES isreturned and er r no is set to indicate the error.
ERRORS Seedsoi oct| (2) man pages

EINVAL

The accessed mailbox has not been allocated, or it has not been alocat-
ed in buffered mode, or thect | op/ar g argument(s) iS/are invalid.

4516 vui_reg_base set(), vui_reg_base get()

SYNTAX #i ncl ude <sys/vne_types. h>

#i ncl ude <sys/vne. h>

#i ncl ude <sys/vui.h>

int vui_reg_base_set (int dev,
vneaddr _t regbase,
bt _t node)

int vui_reg_base_get (int dev,
vneaddr _t *regbase,
bt _t *node)

DESCRIPTION vui _reg_base_set ()
enables access to the register set of the VM Ebus interface chipset from
VME and sets the base address. Refer to the Release Notes for the re-
quired alignment and address space. Note

— that the address of the register slave window may also affect the
addresses for mailboxes (e.g. FGA-5x00)

ﬁﬁ[E Solaris VMEbus Driver Page 89

SOLECTRON SUBSIDIARY

vnect | Application Programmer’s Guide

— and that, if mailboxes have been allocated, the register slave win-
dow may already be set.

vui _reg_base_get ()
reads out the register base of the VMEDbus.

VARIABLES Variables forvui _reg_base_set ():
dev
file descriptor of an opened VME device

reghase
VME register base address

Variables forvui _reg_base_get ():
dev
file descriptor of an opened VME device

*regbase
this pointer returns the current VME register base address

RETURN On successful completion, both functions retid _OK. Otherwise
VALUES VUl _FAI L is returned andr r no is set to indicate the error.
ERRORS See aldooct | (2) man pages
El NVAL
Invalid request or argument.
ENOTSUP
Action not supported.
EXAMPLE {
|nt viredev;

vneaddr _t regbase;

if ((vredev=open("/dev/vnectl", O RDWR)) == -1)
{

}

vui_reg_base_set(vmedev, 0xffe0);
vui_reg_base_get(vmedev, ®base);
printf("->register base address: 0x%Ix\n", regbase);

perror("open™); ... I* ERROR */

(void)close(vmedev);

204936 9 — 0 January 2000

Page 90 Solaris VMEbus Driver F\/%[E

Application Programmer’s Guide vnect |

4.5.17 vui_reg_read(), vui_reg_write()

SYNTAX

DESCRIPTION

VARIABLES

#i ncl ude <sys/vne_types. h>

#i ncl ude <sys/vne. h>

#i ncl ude <sys/vui.h>

/* if fgab000 or fga5100 based CPU board then include: */
#i ncl ude <sys/fga5000. h>

/* if s4-based CPU-board then include: */

#i ncl ude <sys/s4. h>

int vui_reg_read (
int dev,
ul ong_t vrmereg,
ul ong_t *regval ue);

int vui_reg wite (
int dev,
ul ong_t vrmereg,
ul ong_t regval ue);

vui _reg_read()
alows reading a register of the VME interface which is specified by
VvIrer eg. r egval ue points to the address to be used for storing the
dataread.

vui _reg_wite()
alows writing a register of the VME interface which is specified by
virer eg. r egval ue isthe value to be written to the register.

Variablesforvui _reg_read():
dev
file descriptor of an opened VME device

vner eg
specifies the register to be read. The registers for the VME interface
are defined in the corresponding include file (refer to the Release
Notes), e.g. insys/ f ga5000. h. Only use the literals defined in the
include file, as they contain, among other information, the offset and
size of the registers present. It is not necessary to know the absolute
physical or virtual address of the register set.

When accessing register arrays, one should use the macro
VVVE_REGARR() defined in sys/ vne_t ypes. h, which calculates
the correct parameter for a certain index.

*regval ue
For a read access this variable contains the pointer to the address
where the register content shall be stored.

ﬁﬁ[E Solaris VMEbus Driver Page 91

A SOLECTRON SUBSIDIARY

viect |

Application Programmer’s Guide

RETURN
VALUES

ERRORS

EXAMPLE

Variablesforvui _reg_wite():
dev
file descriptor of an opened VME device

vner eg
specifies the register to be written. The registers for the VME interface
are defined in the corresponding include file (see Release Notes), e.g.
insys/ f ga5000. h. Only use the literals defined in the include file,
as they contain — among other information — the offset and the size of
the registers present. It is not necessary to know the absolute physical
or virtual address of the register set.

When accessing register arrays, one should uséMBeREGARR()
macro defined irsys/ vime_t ypes. h, which calculates the correct
parameter for a certain index.

regval ue
For a write access this variable contains the value which shall be writ-
ten to the VME register.

On successful completioWUl _ K is returned. Otherwis&/Ul _FAI L
is returned aner r no is set to indicate the error.

See aldooct | (2) man pages

EAGAIN
At the time of execution the action cannot be done, e.g. because no re-
sources are available.

ECANCELED
A timeout occurred.

EINVAL
Invalid request or argument, or no more ranges are available.

ENOTSUP
Action not supported.

#i ncl ude <sys/fga5000. h>

i nt vnedev;

u_l ong regval ue;

i f ((vredev=open("/dev/vrectl", O RDWR)) == -1)
{

}

vui_reg_write(vmedev, F50_REG_FMB_ADDR, 10);

vui_reg_read(vmedev, VME_REGARR(F50_REG_VME_RANGE, 6),
®value);

perror("open"); .../ ERROR*/

(void)close(vmedev);...

—
204936 9 - 0 January 2000

Page 92

Solaris VMEbus Driver F\/%[E

Application Programmer’s Guide vnect |

45.18 vui_reset()

SYNTAX

DESCRIPTION

VARIABLES
RETURN
VALUES

ERRORS

EXAMPLE

#i ncl ude <sys/vne_types. h>
#i ncl ude <sys/vne. h>

#i ncl ude <sys/vui.h>

int vui_reset(int dev)

vui _reset()
resets all VMEbus CPU boards except for the one the driver is running
on by triggering VME SY SRESET.

Note: See the Release Notes whether this function is supported or
not. If supported, the functionality of this call depends on the CPU
board’s switch setting. Enabling or disabling the SYSRESET output
and input signal is switch-selectable. Therefore, check the CPU
board’s switch setting to ensure proper operation.

dev
file descriptor of an opened VME device

On successful completion, VUI _ K is returned. Otherwise, VUl _FAl L
isreturned and er r no is set to indicate the error.

Seealsoi oct | (2) man pages

EINVAL
Invalid request or argument, or no more ranges are available.

ENOTSUP
Action not supported.

{ | nt viredev;
i f ((vmedev=open("/dev/vrmectl", O RDWR)) == -1)
{ perror("open™); ... I* ERROR */
zlui_reset (vmedev);
.(.\}oid)close(vmedev);
}

A SOLECTRON SUBSIDIARY

ﬁﬁ[E Solaris VMEbus Driver Page 93

viect |

Application Programmer’s Guide

45.19 vui_sysfail_assert(), vui_sysfail_deassert()

SYNTAX

DESCRIPTION

VARIABLES

RETURN

VALUES

ERRORS

EXAMPLE

#i ncl ude <sys/vne_types. h>

#i ncl ude <sys/vne. h>

#i ncl ude <sys/vui.h>

int vui_sysfail _assert(int dev)
int vui_sysfail _deassert(int dev)

vui _sysfail _assert()
asserts sysfail line.

vui _sysfail _deassert()
clears sysfail line.

dev
file descriptor of an opened VME device

On successful completion, both functions return VUl _OK. Otherwise,
VUl _FAI L isreturned and er r no is set to indicate the error.

Seedsoi oct | (2) man pages

EAGAIN
At the time of execution the action cannot be done, e.g. because no re-
sources are available.

ECANCELED
A timeout occurred.

EINVAL
Invalid request or argument, or no more ranges are available.

ENOTSUP
Action not supported.

{
|nt viredev;
if ((vredev=open("/dev/vnectl", O RDWR)) == -1)
{ perror("open”); ... /* ERROR */
}

vui_sysfail_assert (vmedev);

sleep(1);
vui_sysfail_deassert(vmedev);

(void)close(vmedev);

Page 94

Solaris VMEbus Driver F\/%[E

204936 9 — 0 January 2000

Application Programmer’s Guide vnect |

4520 vui_(n)sysfail_wait(), vui_(n)sysfail_signal()

SYNTAX #i ncl ude <sys/vme_types. h>
#i ncl ude <sys/vne. h>
#i ncl ude <sys/vui.h>
int vui_sysfail_wait (int dev)
int vui_sysfail _signal (int dev, int signal)
int vui_nsysfail_wait (int dev)
int vui_nsysfail_signal (int dev, int signal)

DESCRIPTION vui _sysfail_wait()/vui_nsysfail_wait()
waits for the VME SY SFAIL* to be

— asserted in casewolii _sysfail_wait()

— or negated in case otii _nsysfail _wait().

vui _sysfail _signal ()/vui _nsysfail _signal ()
sets the signal which shall be sent to the user application when VME
SYSFAIL* is

— asserted in case wbii _sysfail _signal ()

— or negated in case volii _nsysfail _signal ().

VARIABLES Variables forvui _(n)sysfail _wait():
dev
file descriptor of an opened VME device

Variables forvui _(n) sysfail _signal ():
dev
file descriptor of an opened VME device

si gnal
signal to be sent to the user application when VME SYSFAIL* is as-
serted. By default thermrect | driver is configured to detect only tran-
sitions of the SYSFAIL line from high to low or vice versa, but not the
current state of the SYSFAIL line. This behavior can be changed by
modifying the driver configuration file. For further information refer to
the respective commentvmect | . conf.

If set back td, sending the signal is stopped.

Note: Not all signals can be sent to an application. For a list of
possiblesignals, seethe pr oc_si gnal (9F) man page.

RETURN On successful completion, both functions retd _OK. Otherwise
VALUES VUl _FAI L is returned andr r no is set to indicate the error.
ERRORS See algooct | (2) man pages

SOLECTRON SUBSIDIARY

ﬁﬁ[E Solaris VMEbus Driver Page 95

viect |

Application Programmer’s Guide

4521 vui_error_info()

EXAMPLE 1

EXAMPLE 2

SYNTAX

DESCRIPTION

EAGAIN
At the time of execution the action cannot be done, e.g. because anoth-

er process is using the SY SFAIL functions.

EINVAL

Invalid request or argument.

ENOTSUP

{

{

Action not supported.

int vnedev;
if ((vredev=open("/dev/vnectl", O RDWR)) ==
{

}

perror("open"); .../ ERROR*/

vui_sysfail_wait (vmedev);

(void)close(vmedev);

int vmedeyv;
if (vmedev=open("/devivmectl", O_RDWR)) == -1)
{

}

sigset(SIGINT, acfail_hdl);
vui_sysfail_signal(vmedev, SIGINT);

perror("open"); ... [* ERROR */

vui_sysfail_signal(vmedev, 0);

(void)close(vmedev);

#include <sys/vme_types.h>

#include <sys/vme.h>

#include <sys/vui.h>

int vui_sysfail_wait(vme_errinfo_t *err_infop, u_int flags)

vui _error_info()
retrieves error counters from VME fault handling routines.

-1)

Note: Errors caused by DMA transactions are not covered by this
mechanism since they are handled by the DMA interface.

Page 96

Solaris VMEbus Driver F\/%[E

204936 9 — 0 January 2000

Application Programmer’s Guide vnect |

VARIABLE vime_errorinfo_t isdefinedinvme. h. It is used to count various
TYPES errors that have occurred during runtime.

typedef struct vme_errinfo

{

u_int vme_werrs;/* total #of wite errors */
u_int vme_wp_errs;/* #of VME wite posted errors */
u_int vme_rerrs;/* #of VME read errors */
u_int |bus_wp_errs;/* #of |ocal bus posted wite err. */
u_int iack_errs;/* #of IACK errors */
u_int resl, res2, ress3;

} vne_errinfo_t;

vme_werrs
total number of posted and non-posted VMEbus write errors

VIe_Wp_errs
total number of VM Ebus posted write errors

VIe_rerrs
number of VMEDbus read errors

| bus_wp_errs
number of posted local bus write errors that have not been reported to
the accessing VM Ebus master by asserting BERR

iack_errs
number of failed interrupt acknowledge cycles initiated by the local
CPU acting as interrupt handler

VARIABLES dev
file descriptor of an opened VME device

*error_infop
pointer to a VME error count structure.

flags
isabit set which may contain the following elements:

VMVE_SLEEP walits for the next error event increasing one of
the error counters before returning counters. The
wait state is interruptible by a signal. The data
stored to err _i nf op will be updated even if
the wait state was interrupted by asignal.

0 returns counters immediately.

Note: It may bethat error events are dropped when using the flag
VME_SLEEP. This is the case when an error occurs in the time
between issuing one of the above function calls and actually waiting
for an error event. To prevent such problems, the application

ﬁﬁ[E Solaris VMEbus Driver Page 97

SOLECTRON SUBSIDIARY

viect |

Application Programmer’s Guide

RETURN
VALUES

ERRORS

EXAMPLE

programmer should set a timeout which interrupts the wait state
from timeto time and then check the error counters.

On successful completion VUI_OK isreturned. Otherwise VUI_FAIL is
returned and er r no is set to indicate the error.

Seedsoi oct | (2) man pages

EINTR
A wait state has been interrupted by a signal. The contents of the
counter values will be up to date

EINVAL
Invalid flags have been provided or er r _i nf op wasNULL.

{ ...
int vnedev;
vine_errinfo_t err_infop;
if ((vredev=open("/dev/vnectl", O RDWR)) == -1)
{
perror("open");
}
vui _error_info (vmedev, &err_infop, 0);
printf("->total nunber of wite errors: %\ n",
err_infop.vme_werrs);
(void)cl ose(vnedev);
}

Page 98

Solaris VMEbus Driver F\/%[E

204936 9 — 0 January 2000

Device Driver Developer’'s Guide VME Nexus Driver Configuration

5 Device Driver Developer’s Guide

Device driver developers need to know the interfaces between the nexus
driver and the leaf drivers. The Force Computers VMEbus nexus driver
provides 2 such interfaces:

1. the standard Solaris DDI/DDK: For information on DDI/DDK, see
the man pages and the Solaris manual on writing device drivers.

2. the VDI — the VME driver interface: It is an extension of the
DDI/DDK to support the VMEbus capabilities of CPU boards from
Force Computers. It provides a standard interface. The VDI is
described in this section.

Example For an example on how to use the VDI functions see the source code of
the leaf drivers included in the Solaris VMEbus Driver package.

51 VME NexusDriver Configuration

Configuration / pl at f orm arch/ ker nel / drv/ VME. conf is the configuration

file file of the VMEDbus nexus driver. Depending on the hardware platform,
ar ch may be eithesun4dmor sun4u.
Within the configuration file values may be assigned to the master and
slave window properties (see below). However, the default values are de-
fined to be suitable for standard use of the Solaris VMEbus Driver pack-
age. Only when integrating drivers which are not included in the Solaris
VMEDbus Driver package (but, e.g., included in third party products) or
when customizing of drivers is necessary, the values o¥¥ie conf
properties may have to be changed.

511 Master Window Properties

Under normal circumstances it is not necessary to define master windows
in VME. conf because master windows will be set up dynamically when
a driver requests one.

However, this feature may help saving resources of the VMEDbus inter-
face chip because only a limited amount of master windows is available
(e.g., 16 on the FGA-5000).

Master windows which are defined WVE. conf are always 1 slot in
size, i.e. 256 MByte.

ﬁﬁ[E Solaris VMEbus Driver Page 99

A SOLECTRON SUBSIDIARY

VME Nexus Driver Configuration Device Driver Developer's Guide

Example:

Assume that there are several VMEbus devices which occupy adja-
cent address ranges in the A32/D32 space. If so, it is possible to de-
fine 1 master range in VME. conf that covers all devices. When one
of the corresponding device drivers requests a master range, the
VMEDbus nexus driver will notice that there already exists a range
which covers the requested one. The result is, that only 1 instead of
several master windows of the VMEbus hardware have to be re-
served.

The remaining parts of this section
» first describe the master window properties which can be set:
— properties for master windows (see “Master windows” below),

— properties to use programmable AM codes in conjunction with a
bus property specifying an address space (see “Programmable AM
codes” below),

» followed by a description of how to specify defaults (see page 102).

Master windows The following properties control master window allocation:
vew n=vneaddr [, si ze, bus- properties]
vmew nX=vneaddr [, si ze, bus- properti es]

vneaddr
specifies the VMEbus address to be covered by the master window.

size
specifies the number of bytes of VMEbus address space to be mapped.
If this parameter is not specified, 256MByte are allocatedratd-
dr.

bus- properties
is a set of bits which specifies the VMEbus address space and other
properties of the master window (see section 6 “VME Bus Properties”
on page 159).

There are CPU boards supporting more than 1 master window at a time
(e.g., all CPU boards with FGA-5000 interface). For these CPU boards,
usevirewi n for the 1st and/mewi nXfor all following windows where

Xis replaced by a digit.

Sample definition of 3 master windows:

VME address 10000000,4, size 256 MB, A32 space,

privileged data access, max. data width is 32 bit.
#

virewi n=0x10000000, 0x10000000, 0x00040004

204936 9 — 0 January 2000

VME address 20000000,5, size 256 MB, A32 space,

Page 100 Solaris VMEbus Driver F\/%[E

Device Driver Developer’'s Guide VME Nexus Driver Configuration

privileged data access, nax. data width is 16 bit,
wite posting is enabl ed.

#

vhmewi n1=0x20000000, 0x10000000, 0x01040002

VME address 0, size 4KB, Al6 space,

privileged data access, nax. data width is 32bit,
#

vimrewi n2=0x00000000, 0x1000, 0x00010004

Programmable There are VMEDbus interface chips which offer programmable AM codes

AM codes (also called user-defined AM codes). The FGA-5100 for example, allows
to program 2 user-defined AM codes for VME master windows and to se-
lect one of them individually for each master window. This is supported
by the VMEDbus nexus driver via the pant property (pant — program-
mable AM code). The 2 AM codes are fixed during system run-time, i.e.
there is no driver interface to set the AM codes dynamically.

— specifying e« The 2 programmable AM codes are specified vipdine property
in the configuration file of the VME nexus drivefiyE. conf .

Note: When changing a value for a programmable AM code in
VME. conf , the vimepl us. conf has to be updated as well so that
the bus property for the corresponding r eg property reflects the
new valuein the VMVE. conf file.

pant consists of 2 integer values defining the programmable AM
codes 1 and 2. If npant property is defined iWME. conf , default
values are used: {0for AM code 1 and 1} for AM code 2.

To define the 2 codes, the following line has to be inserted into
VME.conf:

panc=val ue_of _AM code_1, val ue_of_AM code_2
Sample definition of AM code 16x15 and AM code 2 Hx16:
panc=0x15, 0x16

—setup window ¢ To set up master windows using programmable AM codes, use the
VME_BT_PAMC1 andVME_BT_PAMC2 bits viavdi _map_abs() .

Note. TheVME_BT_PAMC1 and VME_BT_PAMC2 bus properties do
not define the address space size, which means that a
VME_BT_PAMCx bus property literal must always be used in
combination with a bus property specifying an address space
(VME_BT_AxXx).

A SOLECTRON SUBSIDIARY

ﬁﬁ[E Solaris VMEbus Driver Page 101

VME Nexus Driver Configuration Device Driver Developer's Guide

— access devices

* Memory devices to access the VMEDbus using the programmable AM

codes are provided by therepl us driver:
/ dev/ virepamld16
/ dev/ virepand16
/ dev/ vimepanild32
/ dev/ vimermap2d32

Specifying defaults

When a device driver wants to access VMEbus locations, it usually maps
them viaddi _nmap_r egs(9e) . This requires a eg property in its
configuration filedri ver. conf which specifies the correct address
space. However, this might not be possible in all cases:

» Certain properties cannot be set via this interface: for example
enabling or disabling write posting for a mapping.

» Others cannot be set on a per mapping basis but only globally,
thereby affecting all mappings: for example generating privileged or
non-privileged AM codes in case of FGA-5000 or S4 based hard-
ware.

The default settings for such properties can be controlled by the
VME: vime_mast er _def aul t s variable in/ et ¢/ syst em It speci-

fies a set of miscellaneous bus property bits as defined in
sys/vne_types. h (see section 6.3 “Miscellaneous Bus Properties”
on page 162 and the respective sectioRebdase Notes for the hardware
dependencies). Note that only miscellaneous bus properties can be speci-
fied here.

A device driver can override the VMEbus nexus driver’s default settings
by using vdi _transfer_set()/~_get() (see section5.4.27
“vdi_transfer_set(), vdi_transfer_get()” on page 154). For an example,
see the source code of thenmeplus driver, which calls

vdi _transfer_set() at bootup to override the VMEbus nexus
driver’s default settings with its own defaults.

Example for FGA-5000 based har dwar e:
The following entry in/ et ¢/ syst em

— enables write posting for all drivers which do not override the
VMEbus nexus driver's defaults viadi _transfer_set ()
(flag VME_BT_WP =0100. 0000,4)

— and provides for non-privileged access privilege for all master
accesses (flagMe_BT_NPRV =0800. 0000g).

set VME:vne_master_default = 0x09000000

204936 9 — 0 January 2000

Page 102

Solaris VMEbus Driver F\/%[E

Device Driver Developer’'s Guide VME Nexus Driver Configuration

5.1.2 Slave Window Property

The slave window property is only relevant to be set correctly if a DDI
compliant leaf driver wants to set up DMA transfers from a VMEbus de-
vice. By setting this property, the VMEbus nexus driver can provide a
VVMEbus address range where DMA capable VMEDbus devices may ac-
cess the DMA buffer. Ensure that the specified address range fits to the
requirements of the VME DMA device(s).

Note: If you do not use drivers performing VME DMA via the
standard DDI interface, you should not definethis property, because
valuable hardware resources are used up by this. For the drivers
included in the Solaris VM Ebus Driver package thereis no need to
definethis property.

Thefollowing slave window property can be set if needed:
sl avewi n=vneaddr, size, space

vheaddr
defines the VM Ebus start address of the slave window.

size
defines the size of the slave window in Bytes.

space
specifies the address space and the bus properties for the slave window
(see section 6 “VME Bus Properties” on page 159 or see the VMEbus
nexus driver’s configuration file).

All 3 parameters must comply to the hardware requirements of the CPU
board. Refer to th&olaris VMEbus Driver Release Notes and the CPU
board’'sTechnical Reference Manual for further information.

A SOLECTRON SUBSIDIARY

ﬁﬁ[E Solaris VMEbus Driver Page 103

Device Driver Properties

Device Driver Developer's Guide

5.2 DeviceDriver Properties

A devicedriver is usualy configured via device properties. Device prop-
erties can be specfied by means of a driver configuration file (refer to
driver.conf(4)).

This chapter describes some extensions to standard properties which are
specific to the Force Computers VME nexus driver:

* interrupt specifications (see section 5.2.1 “Non-Vectored Interrupter
Handling” on page 104), and

» register specifications (see section 5.2.2 “WMEbus Mappings” on
page 105).

521 Non-Vectored Interrupter Handling

Solaris differentiates between vectored and non-vectored interrupts.
SBus interrupts are non-vectored (i.e. the interrupt service routine is
called based on the interrupt level) whereas VMEDbus interrupts are usual-
ly vectored (interrupt service routine is called based on the obtained vec-
tor).

The VME nexus provides the possibility to install a non-vectored inter-
rupt service routine (ISR) for a device driver as well. Such an ISR is
called immediately after the VMEbus interrupt has been detected by soft-
ware. For VMEbus bridges that perform software IACK, this happens
even before the IACK cycle has been initiated. Examples for VMEbus
bridges which perform software IACK are S4 and FGA-5x00 whereas for
example the Universe does not perform software IACK.

To set up such an interrupt service routine, the device driver developer
has to specify 1 as interrupt vector in thent er r upt s property of his
driver.conf file. The VME nexus driver then reserves the given
VMEDbus interrupt level exclusively for this device driver, i.e. the device
driver grabs this interrupt level. This has the following side effects:

* As long as a device driver has grabbed a VMEbus interrupt level, all
other requests for installing an ISR for this level are rejected.

* Aslongas at least 1 ISR for a specific level is installed, it is not possi-
ble to grab this interrupt level by installing a handler with “veetor
1"

Note: TheVME nexusdriver doesnot attempt to perform an |ACK
cycle itself for interrupt levels at which such a non-vectored ISR is
installed. However, hardwar e may requirethis. Therefore, the device
driver developer must use vdi _i ntr_acknow edge() to obtain
the interrupt vector (see section 5.4.12 “vdi_intr_acknowledge()” on
page 130), even if the vector is not used.

204936 9 — 0 January 2000

Page 104

Solaris VMEbus Driver F\/%[E

Device Driver Developer’'s Guide Device Driver Properties

5.22 VMEbusMappings

A driver that wantsto map VM Ebus space for accessing a device needsto
declare a reg property in its driver configuration file (see driv-
er.conf (4)). For VMEbus drivers, ar eg property consists of an arbi-
trary number of triplets, each one describing

» the VMEbus address space and access width (the bus type),
» the start address within the selected bus type, and

» the size of the area to be mapped.

The format of the bus type is defined as follows:

* Bits 0..5 define the VMEbus AM code to be generated on the
VMEDbus.

* Bits 6 and7 are evaluated for single cycle AM codes and define the
maximum data width generated on the VMEbus (1 byte, 2 bytes or 4
bytes per cycle). These bits are ignored for all kinds of burst AM
codes. The assignment is as shown in the following table:

Table5 Data width encoding

Bit 7 Bit 6 Hexadecimal Data width on VM E

1 0 806 D8

0 0 006 D16 and smaller

0 1 404 D32 and smaller

1 1 cOpe reserved
Burst Cycles When specifying an AM code that represents a VMEbus burst operation
with (e.g. Ogg for supervisory MBLT data transfers), it depends on the hard-

Programmed I/O ware whether burst cycles will be generated at all or what circumstances
must be satisfied for doing so. Refer to Retease Notes for details on
the hardware under consideration.
In any case, if no burst cycles are generated, accesses to VME via such a
mapping will result in the corresponding single cycle AM code with a
data width of D32 or smaller (for AM code @¢his is equivalent to a bus

type of 0dg + 40,5 = 4dg).

Programmable = To make use of the programmable AM codes provided by the VME nex-

AM codes us, simply provide a bus type with the AM code field (bits 0..5) set to the
value configured in the VME nexus’ configuration file (see section 5.1
“VME Nexus Driver Configuration” on page 99). Additionally, set the
data width bits as shown in table 5 “Data width encoding” on page 105 to
define the maximum access width on the VMEDbus.

ﬁﬁ[E Solaris VMEbus Driver Page 105

A SOLECTRON SUBSIDIARY

Device Driver Properties

Device Driver Developer's Guide

Glaobal properties Some VMEDbus bridges do not support to set certain properties individu-

aly per mapping. Instead, they have to be declared globally, thus affect-
ing al VMEbus master transfers. In such a case the VME nexus driver
must be configured properly before ar eg property which reflects such a
global setting becomes usable.

Example:

On FGA-5000 based boards (e.g. SPARC/CPU-5V), the selection wheth-
er to generate supervisory or non-privileged AM codes can only be made
globally. The default setting is to generate supervisory accesses. When
using a driver with ar eg property denoting a non-privileged AM code,
set the following line in the system configuration file / et ¢/ syst em

set VME: vne_nast er _def aul t =0x08000000

For details on this configuration option see section 5.1 “VME Nexus

Driver Configuration” on page 99.

Page 106

Solaris VMEbus Driver F\/%[E

204936 9 — 0 January 2000

Device Driver Developer’'s Guide Nexus Driver Fault Handling

5.3 NexusDriver Fault Handling

Read errors and non-posted write errors will result in abus error signal to
be sent to the originating process whenever possible.

Asof release2.1 As of Solaris VMEbus Driver release 2.1, the originating process is

passed a SIGBUS signal and a signal information structure (si gi nf o)
describing the exact circumstances in case of aVMEDbus bus error.
For the general mechanism of how to obtain such asi gi nf o structure
see the si gacti on(2) man pages. With respect to the information
provided in the manual pagethesi gi nf o structure describing the error
is extended in the following way:

» Thesi _code element denotes the reason for the bus error signal:
— si _code =VME_BERR_Win case of a VMEbus write error
— si _code =VME_BERR_Rin case of a VMEbus read error

» Thesi gi nfo_t structure pointer should be casted to a pointer to
vire_si gi nf o_t whichis defined isys/ vire_t ypes. h. It pro-
vides the following entries:

— vmeaddr_t si_vmeaddr
Thisisthe VMEbus address where the fault occurred.
— bt_t si_busprop

Thisisaset of VME_BT_xxx macros describing the properties of
the VM Ebus access (address space, data width, etc.).

For information related to read errors and error action flags, see
section 3.1 “Configuration” on page 17.

Since the way the VME nexus driver can handle VMEbus errors depends
on the hardware architecture, refer to Rebease Notes for further infor-
mation on the CPU board under consideration.

ﬁﬁ[E Solaris VMEbus Driver Page 107

A SOLECTRON SUBSIDIARY

VDI Functions

Device Driver Developer's Guide

5.4 VDI Functions

The following table gives an overview of the functions provided by the
VME driver interface:

Table 6 Overview of VDI functions

Keywords Function(s)

Initialization vdi _attach() (p. 111)

Master mappings vdi _map(), ~_unmap() (p. 132)
vdi _map_abs(), ~_regspec() (p. 134)
vdi _reg_space() (p. 148)

Slave mappings vdi _smem al oc(),~_free() (p. 148)
vdi _smem map(), ~_unmap() (p. 149)
vdi _smem enabl e() (p. 154)

DMA controller vdi _dma_start() (p. 115)
vdi _dmac_al | oc_handl e() (p. 120)

VMEDbus

e arbiter vdi _arb_node_set (), ~_get (p. 109)

* request mode vdi _breq_set(), ~_get (p. 113)

e request level vdi _brl_set(), ~_get (p. 114)

* release mode vdi _brel _set(), ~_get (p. 112)

e transfer mode vdi _transfer_set(), ~_get (p. 154)

e interrupter vdi _i ntr_acknow edge() (p. 130)

vdi _intr_generate() (p. 132)
vdi _virqg_trigger, ~_ackwait () (p. 156)

VME events: SYSFAIL, | vdi_event_setup(), ~_release() (p. 122)

ACFAIL, ABORT, ...

Register access vdi _reg_read(), ~_wite() (p. 144)

Register access from vdi _regslave_set(), ~_get (p. 145)

VMEDbus

Mailboxes vdi _nmbox_attach(), ~_detach() (p. 136)
vdi _nbox_enabl e(), ~_disable() (p. 141)

vdi _nbox_getinfo() (p. 141)
vdi _mbox_i bl ock_cooki e(), vdi_nbox_hilevel () (p. 143)

Read-modify-write cycles

vdi_rmn() (p. 147)

Hardware information

vdi _info() (p. 125)

Error information

vdi _error_info() (p. 121)

Page 108

Solaris VMEbus Driver F\/%EE

A SOLECTRON SUI

204936 9 — 0 January 2000

Device Driver Developer’'s Guide VDI Functions

54.1 Calling VDI functions

VDI functions can be called by any device driver if the Force Computers
VME Nexusdriver is loaded. Note, however, the following:

» A device driver cannot assume that the VME Nexus driver is loaded if
the driver is not a child of classre. It is therefore not advised to call
VDI functions by device drivers that are not direct or indirect children
of theve class.

* When a device driver module using VDI calls is loaded, the kernel
must dereference the VDI function references. This requires that a
device driver declares a global variable namé@&pends_on as
follows:

char _depends_on[]="drv/VME";

» To prevent loading a driver which uses VDI functions in an environ-
ment with a 3rd party VME nexus driver that does not provide VDI
functionality, the driver should evaluate the return value of
vdi _attach() in it's probe(9e) orattach(9e) routine (see
section 5.4.3 “vdi_attach” on page 111.).

5.4.2 vdi_arb_mode set(), vdi_arb_mode _get()

SYNTAX #i ncl ude <sys/vdi.h>
int vdi_arb_node_set(u_int node);
int vdi _arb_node_get(u_int *node);

DESCRIPTION vdi _arb_node_set ()
controls the arbitration mode of the VMEDbus arbiter. This can only be
altered if the board is system controller (VMEbus slot 1).

vdi _arb_node_get ()
Checks whether the board is slot-1 device and returns the current arbi-
tration mode.

Note: Software cannot detect whether the board is mounted in
VMEbus dot 1 in case of $S4 based hardware. In this case
vdi _arb_node_get () always returns the current setting of the
arbiter, regardlesswhether it isenabled or not.

VARIABLES node
arbitration mode, for possible values see below:

ﬁﬁ[E Solaris VMEbus Driver Page 109

SOLECTRON SUBSIDIARY

VDI Functions

Device Driver Developer's Guide

Table7

RETURN
VALUES

Arbitration modes

VME_ARB_OFF

The board is not system controller (slot-1 de-
vice).

VME_ARB_SI NGLE

Singlelevel arbiter on level 3

VME_ARB_RR

Round robin arbiter

VME_ARB_PRI

Priority arbiter (level 3 = highest priority)

VME_ARB_PRI RR

Combined round robin / priority arbiter.
Level 3 requests aways have the highest pri-
ority, levels 0, 1 and 2 are handled in round
robin fashion.

VDI _SUCCESS
if successful.

VDI _I NVALI D

parameter node is invalid, arbitration mode is not supported, or the
CPU board is not the system controller.

Page 110

Solaris VMEbus Driver F\/%EE

A SOLEGTRON SU

204936 9 — 0 January 2000

Device Driver Developer’'s Guide VDI Functions

EXAMPLE

5.4.3 vdi_attach

SYNTAX

DESCRIPTION

VARIABLES

RETURN
VALUES

voi d ena_r oundr obi n()

{

int arb;

/* Check slot-1
*/
vdi _arb_node_get (&arb);

if (arb == VME_ARB_OFF)

{
cm_err(CE_WARN,
“Board is not mounted in slot 17);

else

/* Set round-robin arbitration
*/
if (vdi_arb_mode_set(VME_ARB_RR)!=VDI_SUCCESS

{
cmn_err(CE_WARN, “Failed to set arbiter

#include <sys/vdi.h>
int vdi_attach(dev_info_t *dip, void *infop);

vdi _at tach() hasto be called before any other VDI function in order

to ensure that the driver’s parent VME Nexus provides the VDI interface.
The preferred location to invoke this function is within a driver’s probe or
attach routine.

dip
The device info-pointer of the calling driver.

i nfop
Must be set toNULL.

VDI _SUCCESS
if successful.
VDI _FAI LURE

the parent VME nexus driver does not support the VDI calls. No VDI
function must be called in this case.

ﬁﬁ[E Solaris VMEbus Driver Page 111

A SOLECTRON SUBSIDIARY

VDI Functions

Device Driver Developer's Guide

EXAMPLE

static int nmydrv_probe (dev_info_t *dip)

if (VD _SUCCESS == vdi _attach(dip, NULL))

return (DDl _PROBE_SUCCESS);

/* Required VDI support not present

{
{
}
*/
return DDl _PROBE_FAI LURE;
}

54.4 vdi_bre_set(), vdi_bre_get()

SYNTAX

DESCRIPTION

VARIABLES

Table 8

RETURN
VALUES

#i ncl ude <sys/ vdi

. h>

int vdi_brel _set(int node);
int vdi_brel _get(int *node);

vdi _brel _set ()

controls how the VME bus is released after a master cycle has com-

pleted.
vdi _brel get()

returns the current release mode.

node
bus release mode for future master transfers, for possible values see
below:
Busrelease modes
VME_BRL_ROR | Release bus on request (BR[]* asserted)
VME_BRL_RWD | Release bus after transfer is completed (“Release
when done”)
VME_BRL_RAT | Release bus after timeout
VME_BRL_ROC | Release when bus is clear (BCLR* asserted)

vdi _brel get()

vdi _brel _set ()

VDI _SUCCESS
if successful.
VDI _| NVALI D

returns the current rel ease mode.

returns one of the following values:

if the parameter node isinvalid or the release mode is not supported.

Page 112

Solaris VMEbus Driver F\/%[E

204936 9 — 0 January 2000

Device Driver Developer’'s Guide VDI Functions

EXAMPLE {
int brel;
it (vdi brel set(VME_BRL_RWD) != VDI _SUCCESS)
{
... [* ERROR */
}
|f(vdi_brel_get(&brel) = VDI_SUCCESS)
... [* ERROR */
}
}
545 vdi_breg_set(), vdi_breq_get()
SYNTAX #include <sys/vdi.h>

int vdi_breq_set(int mode);
int vdi_breq_get(int *mode);

DESCRIPTION vdi _breqg_set ()
controls how the VMEDbus is requested for master transfers. The nor-
mal operation should be fair mode. Otherwise, other bus participants
being further down the daisy chain may starve when many transfers are
done in demand mode.

vdi _breqg_get ()
returns the current request mode.

VARIABLES node
bus request mode for future master transfers, for possible values see

below:
Table9 Busrequest modes
VME_BRQ FAI R Request in fair mode, i.e. wait for BG[]* to be
Cleared.
VME_BRQ DEMAND | Request in demand mode, i.e. assert BG[]*
immediately.
RETURN vdi _breq_get () returnsthe current request mode.
VALUES
vdi _breq_set () returnsone of the following values:
VDI _SUCCESS
if successful.
VDI _| NVALI D

if the parameter node isinvalid or the request mode is not supported

A SOLECTRON SUBSIDIARY

ﬁﬁ[E Solaris VMEbus Driver Page 113

VDI Functions

Device Driver Developer's Guide

EXAMPLE

{
int brm
if (vdi_breq_set(VME_BRQ DEVAND) != VDI _SUCCESS)
{
... I* ERROR */
}
if ((rc = vdi_breq_get(&brm)) = VDI_SUCCESS)
{
... I* ERROR */
}
}

54.6 vdi_brl_set(), vdi_brI_get()

SYNTAX

DESCRIPTION

VARIABLES

RETURN
VALUES

EXAMPLE

#include <sys/vdi.h>
int vdi_brl_set(int level);
int vdi_brl_get(int *level);

vdi _brl _set ()
controls the VME request level on which the bus shall be requested for
master transfers.

vdi _brl _get ()
returns the current request level.

| evel
bus request level for future master transfers (0, 1, 2, or 3)

vdi _brl _get () returnsthe current request level.

vdi _brl _set () returnsone of the following values:

VDI _ SUCCESS
if successful.

VDI _| NVALI D
if the parameter | evel isinvalid or the request level is not supported.

{

int brm;

if (vdi_brl_set(2) != VDI_SUCCESS)

{
... I* ERROR */
}
if (vdi_brl_get(&brm) != VDI_SUCCESS))
{
... I* ERROR */

Page 114

Solaris VMEbus Driver F\/%[E

204936 9 — 0 January 2000

Device Driver Developer’'s Guide VDI Functions

}
}
54.7 vdi_dma_start()
SYNTAX #i ncl ude <sys/vdi.h>
int vdi _dma_start(

bt t bt,

vneaddr _t vneaddr,

| baddr _t *I baddr,

uint_t len,

uint_t flags,

int (*waitfp)(caddr_t),
caddr _t arag,

voi d (*cal |l back) (caddr_t),
caddr _t cbarg,

int *rc);

DESCRIPTION vdi _dma_start () is an interface to the on-board VMEbus DMA
controller. It programs the source and destination registers and starts the
DMA transfer.

If the DMAC is not immediately available, the value of (*wai t f p) ()
determines which action is taken. If the value of (*wai tfp)() is
DDI _DMA DONTWAI T, vdi _dma_start () will return immediately.
The value DDI _DMA_SLEEP will cause the thread to slegp and not re-
turn until the current DMA transfer has been finished. Any other valueis
assumed to be a callback function address. In that case
vdi _dma_start() returns immediately and the (*waitfp)()
function is called when the DMAC might have become available (note
that it will be called from alow-level interrupt context).

When the callback function (*wai t f p) () iscaled, it should attempt
to allocate the DMAC again. If it succeeds or does not need the DMAC
any more, it must return the value 1. If it tries to allocate the DMAC, but
failsto do so, it must return O.

When the DMA transfer is terminated, successfully or not, the callback
function (*cal | back) () iscalled with the argument cbar g from the
DMA interrupt routine and r ¢ is set to VDI _ SUCCESS if it terminated
successfully, otherwiseto VDI _FAI LURE. If thevalue of cal | back is
void (*)()1,vdi dma_start() will cause the thread to sleep
and not return until the current DMA transfer has been terminated.

VARIABLES bt
encoded VMEbus address modifier and access-mode (see section 6
“VME Bus Properties” on page 159).

A SOLECTRON SUBSIDIARY

ﬁﬁ[E Solaris VMEbus Driver Page 115

VDI Functions Device Driver Developer's Guide

vireaddr
VMEbus address. Must fit the DMA controller's alignment con-
straints. They can be detected with the function vdi_info (refer to the
Release Notes for information on hardware dependencies).

| baddr
address of the memory object in the format the dma controller expects.
This can be obtained by a call tddi _dna_buf bind_-
handl e(9f), it is thecooki e. dmac_addr ess value. The DMA
handle required for using the DDI DMA functions can be obtained by
vdi _dmac_al | oc_handl e() (p. 120).

I en
number of bytes to transfer.

flags
DDI _DVA _READ orDDI _DVA VWRI TE

waitfp
address of a function to call back later if the requested resources are
not available. The function address&Dl DMA SLEEP and
DDI _DWMA _DONTWAI T are accepted to either wait until the resources
are available or not to wait (and not to schedule a callback).

arg
argument to be passed to the callback funatmint f p if such a func-
tion is specified

cal | back
address of a function to call back later when the DMA transfer is ter-
minated. Can bBIULL.

cbarg
argument to be passed to the callback funatiahl back if such a
function is specified

rc
pointer to the return value of the DMA termination routine

204936 9 — 0 January 2000

Page 116 Solaris VMEbus Driver F\/%[E

Device Driver Developer’'s Guide VDI Functions

RETURN
VALUES

EXAMPLE

VDI _SUCCESS
DMA has successfully been started.

VDI _DVA_BUSY
DMA controller is busy. Another VME DMA transfer is currently run-
ning.

VDI _DVA | NVALI D
unsupported bus type or invalid parameter (unaligned address, invalid
size, efc.)

If the DMA transfer is terminated due to an error condition, r ¢ is set to
- 1, otherwise, to 0.

static void vnedma_done();
static int vnednma_rc;

static int
vhedna_strategy (register struct buf *bp)
{
int ok = 1;
int flags; /* flags to pass to ddi _dnma_buf_setup */
ddi _dnma_cooki e_t dna_cooki e;
uint_t ccount;
int rc;

FLOW DPRI NTF
((VME_DVA_DEBUG | VME_FLOW DEBUG |
VME_LEAF_DEBUG) ,
("start vmedma_strategy()\n"));

flags = DDl _DVA SBUS 64BI T;

/* Set DMA request flags based on struct buf flags */
if (bp->b_flags & B_READ)
{
flags | = DDl _DVA READ;
DPRI NTF ((VME_DVA DEBUG | VME_LEAF _DEBUG) ,
("vmedna_strategy(): READ\n"));

}
else if (bp->b_flags & B WRI TE)

{
flags | = DDl _DVA WRI TE;
DPRI NTF ((VME_DVA _DEBUG | VME_LEAF_DEBUG ,
("vmednma_strategy(): WRITE\n"));
}

ﬁﬁ[E Solaris VMEbus Driver Page 117

A SOLECTRON SUBSIDIARY

VDI Functions Device Driver Developer's Guide

/*
* new DMA interface
*/
if ((ddi _dma_buf _bind_handl e (
vmednma_handl e,
/* previously allocated DVA handl e
* in vmedma_attch() routine with
* ddi _dnma_al | oc_handl e()
*/
bp, /* pointer to buf structure
*/
fl ags, /* Action, what to do */
DDI _DVA _SLEEP,/* Adress of a call back
function if
* resources are not avail able now.
* DDl _DMVA SLEEP = wait until
* resources are avail abl e
*/
(caddr _t) 0,/* argunent passed to the

cal | back
* function
*/
&dma_cookie,/* pointer to the first
* ddi _dma_cooki e struct
*/
&ccount)/* on successfull return, count
* points to value representing the
* number of cookies for this
* DMA obj ect
*/
I = DDI _DVA_MAPPED))
{
cm_err (CE_NOTE, "ERROR:
vnedma: ddi _dma_buf _bi nd_handl e fail ed");
bp->b_resid = bp->b_bcount;
bp->b_flags | = B_ERROR,
bp->b_error = EIQ
bi odone (bp);
ok = 0;
}
if (ok)
{

/* uio_loffset is adjusted in physio.
* Note that we need uio_| offset, because vneaddr _t
* is a 64 bit datatype!
*/
vne_addr = (vmeaddr_t) vmedna_ui op->ui o_| of fset;
DPRI NTF ((VME_DVA DEBUG | VME_LEAF_DEBUG),
("vmedma_strategy():
vneaddr (physical) = 0x% x\n",
(u_long) vne_addr));

Page 118 Solaris VMEbus Driver I XCE

A SOLEGTRON SUBSIDIARY

204936 9 — 0 January 2000

Device Driver Developer’'s Guide VDI Functions

/*
* start DVAC
* if busy, sleep
* call vnedma_done(bp) when done.
*/
rc = vdi _dna_start
(vme_space,
(vreaddr _t) vne_addr,
(I baddr _t) dma_cooki e. dmac_addr ess,
(uint) bp->b_bcount,
(uint) flags,
DDl _DVA_SLEEP,
NULL,
vnedna_done,
(caddr _t) bp,
&vnedna_rc);

if (rc !'= VDl _SUCCESS)

{
DPRI NTF ((VME_DVA_DEBUG | VME_ERROR _DEBUG
VME_RESOURCE_DEBUG | VME_LEAF_DEBUG) ,

("vmednma_strategy():
vdi _dma_start failed: %\n", rc));

ddi _dma_unbi nd_handl e (vnedna_handl e) ;
vdi _to_errno (&c);
bp->b_resid = bp->b_bcount;
bp->b_flags | = B_ERROR,
bp->b_error = rc;
bi odone (bp);
ok = 0;

}

}

FLOW DPRI NTF ((VVE_DVA_DEBUG | VME_FLOW DEBUG |
VVE_LEAF_DEBUG) ,
("end vnednma_strategy(): allways 0\n"));
return (0);

}

/* end of "vmedma_strategy()" */

ﬁi[E Solaris VMEbus Driver Page 119

A SOLECTRON SUBSIDIARY

VDI Functions

Device Driver Developer's Guide

5.4.8 vdi_dmac_alloc_handle()

SYNTAX

DESCRIPTION

RETURN
VALUES

#i ncl ude <sys/vdi.h>
int vdi _dmac_al | oc_handl e(
dev_info_t *dip, [* caller’'s dip */
int (*callback)(caddr_t),/* callback fct.
*/
caddr_t arg, [* callback arg. */
ddi_dma_handle_t *handlep);/* ptr. to
handle */

vdi _dmac_al | oc_handl e() allocatesa DMA handle for the DMA
controller built into the VMEDbus interface chip. A DMA handle is re-
quired as input parameter to all other DMA related functions provided by
the DDI.

vdi _dmac_al | oc_handl e() isbasically identical to the DDI func-
tionddi _dma_al | oc_handl e(9f) , except that theat t r parameter
is missing. vdi _dmac_al | oc_handl e() internaly uses an at-
tributes structure that fitsto the DMA controller used within the VMEbus
interface chip. Therefore, the interface to the DMA controller is hardware
independent.

Except for the missing at t r parameter, the parameters have the same
semantics as described inddi _dma_al | oc_handl e(9f) :

dip
is the device info-pointer of the calling device driver.
cal | back
describes the behavior if no resources are avalable, i.e

DDl _DVA SLEEP, DDI _DMA_DONTWAI T or the address of a call-
back function.

arg
is the argument to be passed to the callback function described by the
cal | back argument.

handl ep
is a pointer to where the DMA handle is stored if the request is suc-
cessful.

Refertoddi _dma_al | oc_handl e(9f) .
VDI _NOTSUP

the VMEDbus interface chip does not have a DMA controller. In this
case, the returned DMA handleisinvalid.

Page 120

Solaris VMEbus Driver F\/%[E

204936 9 — 0 January 2000

Device Driver Developer’'s Guide VDI Functions

54.9 vdi_error_info()

SYNTAX

DESCRIPTION

VARIABLES

RETURN
VALUES

#i ncl ude <sys/vdi.h>
int vdi _error_info(vne_errinfo_t *err_infop,
u_int flags);

vdi _error_info()
returns monitored amount of errors that have occurred during system
runtime.

Note: Errors caused by DMA transactions are not covered by this
mechanism since they are handled by the DM A interfaces.

err_infop
is a pointer to a structure of typevme_erri nf o_t which is defined
insys/ vme. h (for a description of the structure, see section 4.5.21
“vui_error_info()” on page 96)

flags
is a bit set which may contain the following elements:

VME_SLEEP waits for the next error event increasing one of
the error counters before returning counters. The
wait state is interruptible by a signal. The data
stored toerr _i nf op will be updated even if
the wait state was interrupted by a signal.

0 returns counters immediately.

Note: It may bethat error event(s) are dropped when using the flag
VME_SLEEP. This is the case when an error occurs in the time
between issuing one of the above function calls and actually waiting
for an error event. To prevent such problems, the application
programmer should set a timeout which interrupts the wait state
from time to time and should then check the error counters.

VDl _I NTR
if a wait state has been interrupted by a signal.

VDI _I NVALI D
if invalid flags were provided.

VDI _ SUCCESS
in all other cases.

ﬁﬁ[E Solaris VMEbus Driver Page 121

SOLECTRON SUBSIDIARY

VDI Functions

Device Driver Developer's Guide

5.4.10 vdi_event_setup(), vdi_event_release()

SYNTAX

DESCRIPTION

VARIABLES

#i ncl ude <sys/vdi _types. h>

#i ncl ude <sys/vdi.h>

int vdi _event_setup(
dev_info_t *dip,
int event,
voi d (*cb) (caddr _t)ch,
int cbarg);

int vdi _event_rel ease(
dev_info_t *dip,
int event);

vdi _event _set up()
installs a callback function for the specified VMEbus event for the
calling device. If the event has aready been attached successfully by
some driver, the function fails.

vdi _event _rel ease()
detaches the driver identified by di p from the specified event, i.e. the
event handler will not be called any more and the default behavior is
resumed.

dip
deviceinfo pointer of calling device

event
event type to control; for possible values see below.

Note: It is recommended to set the | MM_CALLBACK flag, because
there is no other way to request the current status of the ACFAIL
and SY SFAIL lines.

Page 122

Solaris VMEbus Driver F\/%[E

204936 9 — 0 January 2000

Device Driver Developer’'s Guide

VDI Functions

Table 10 VM Ebus events
Literal Description and default behavior
VME_SYSFAI L VME SYSFAIL lineisasserted; can | see section 3 “Installation and
be ORed with | MM_CALLBACK (see | Configuration Guide” on

below) page 15

VME_NSYSFAI L VME_SYSFAIL line is negated; can
be ORed witH MM_CALLBACK (see
below)

VME_ACFAI L VME ACFAIL line is asserted; can
be ORed witH MM_CALLBACK (see
below)

VVE_NACFAI L VME ACFAIL line is negated; can be

ORed withl MM_CALLBACK (see

below)

I MM_CALLBACK Optional flag to be used together with one of the above literals.

« Ifset,vdi _event _set up() checks whether the selected event is
currently active. If this is the case, the callback function is sched-
uled immediately.

« If not set, the callback function is scheduled at the next high-ta-low
transition YME_SYSFAI L, VWE_ACFAI L) or low-to-high transi-
tion (VME_NACFAI L, VME_NSYSFAI L), regardless of the cur-
rent state.

VIVE_ABORT Abort switch on the front panelis | System enters the PROM
triggered monitor. If the system has been
booted with the kernel debugger,
it will jump into kadb, instead.
ch
pointer to function to be called when the event occurs. It is scheduled
in low-level interrupt context.
cbarg
argument to be passed to callback function
RETURN vdi _event _setup() returnsone of thefollowing values:
VALUES

VDI _SUCCESS

if the callback function isinstalled successfully.

VDI _FAI LURE

if the specified event is already attached or the VME interface hard-
ware does not support receipt of this event.

ﬁﬁ[E Solaris VMEbus Driver

A SOLECTRON SUBSIDIARY

Page 123

VDI Functions

Device Driver Developer's Guide

EXAMPLE

vdi _event _rel ease() returnsone of the following values:

VDI _SUCCESS
if the callback function is removed successfully.
VDI _FAI LURE

if the event has been set up by some other device (not the one specified
by di p) orif it hasn’t been set up at all.

static knutex_t event_mutex;
static kcondvar_t event_cv;

void nyinit()

mutex_init(&event_mutex, “mymutex”’, MUTEX_DRIVER, NULL);
cv_init(&event_cv, “mycv”, CV_DRIVER, NULL);
}

/* event callback function. Trigger conditional variable and
* exit.
*/
static void
event_cb(void* arg)
{
[* This may block until cv_wait is called (see below)
*/
mutex_enter(&event_mutex);
cv_signal(&event_cv);
mutex_exit(&event_mutex);

}

void
wait_for_sysfail_negated()
{
[* Wait for SYSFAIL to be cleared. The mutex is necessary
* because our callback funtion may get called before
* vdi_event_setup() returns (if SYSFAIL is already
* cleared).
*/
mutex_enter(&event_mutex);
if (vdi_event_setup(vmectldip,
VME_NSYSFAIL|IMM_CALLBACK,
event_cb, (void *)NULL) != VDI_SUCCESS)

cmn_err(CE_WARN, "vdi_event_setup failed");

Page 124

Solaris VMEbus Driver F\/%[E

A SOLEGTRON SUBSIDIARY

204936 9 — 0 January 2000

Device Driver Developer’'s Guide VDI Functions

el se
{
/* wait for callback function to be triggered
*/
cv_wait(&event_cv, &event_nutex);
/* SYSFAIL has been cleared, rel ease event
*/
if (vdi_event_rel ease(vrectldi p, VME_NSYSFAI L)
I = VDI _SUCCESS)
{
cm_err (CE_WARN, "vdi _event_rel ease
failed");
}
}
mut ex_exit(&event_mutex);
}
5.4.11 vdi_info()
SYNTAX #i ncl ude <sys/vdi. h>

void vdi _info(vdi _info_t **info);

DESCRIPTION vdi _i nfo()
returns hardware information within the following structure of type
vdi _i nf o_t whichisdefinedinvdi _t ypes. h:

struct vdi _info

{

i nt host bus;

/* Bus the VME bridge resides on. */
char i f_name[32];

/* Name of VME interface hardware */
char cpu_nane[32] ;

/* Nanme of CPU board */
i nt if_rel;

/* Version of interface hardware */
i nt lca_rel;

/* Version of LCA */
event _t events;

/* Events which can be used */
i nt event _i pl;

/[* Interrupt priority event handlers */
vdi _arb_capabilities_t

*arb_caps;

/* Arbiter capabilities */
vdi _req_capabilities_t

*req_caps;

/* Requestor capabilities */
vdi _dna_capabilities_t

*dma_caps;

/* DVA capabilities */
vdi _event _capabilities

*event _caps;

ﬁi[E Solaris VMEbus Driver Page 125

A SOLECTRON SUBSIDIARY

VDI Functions Device Driver Developer's Guide

/* event capabilities */
vdi _master_capabilities_t

*mast er _caps;

/* master mapping capabilities */
vdi _sl ave_capabilities_t

*sl ave_caps;

/* sl ave mappi ng capabilities */

}

typedef struct vdi _info vdi _info_t;

Note: The contents of the various capability structures are mainly
used internally by the VME nexus driver and not all of them are of
use and interest to the device driver developer. For this reason, only
a subset of their contentsislisted here. Refer tosys/ vdi _types. h
for further information.

host bus
denotes the local bus the VMEDbus bridge resides on. Currently it can
be one of VME_I OB_SBUS, VME_| OB_PCl , or VME_I OB_MBUS.

i f_name
is a string containing the name of the localBus-to-VMEbus interface
chip, also called the hardware identifier, e.g. FGA- 5000 (refer to the
Release Notes).

cpu_name
is a string containing the name of the CPU board. It is the value of the
narme property in the OBP root node.

if_rel
is the revision number of the VM Ebus interface hardware.

event s
specifies the events that can be used in vdi _event _setup() /
~ rel ease() (p.122).

event _i pl
istheinterrupt level at which event handlers will be called by the VDI.

arb_caps
is a pointer to a structure describing the capabilities of the board’s
VMEDbus arbiter. It is NULL if no software arbiter support is present.
The structure contains the i nt arbi t er _nodes bit mask de-
scribing the arbiter modes that can be programiibe (ARB_xx lit-
erals, seene_t ypes. h).

reg_caps
is a pointer to a structure describing the capabilities of the board’s
VMEDbus requester. It is NULL if no software requester support i
present. The structure consists of:

00

204936 9 — 0 Januar

Page 126 Solaris VMEbus Driver F\/%[E

Device Driver Developer’'s Guide VDI Functions

— char br_I vl s[4]
which lists the bus request levels that can be programmed. Each
element can contain the numbérsthrough 3, denoting a bus
request level.

— u_int br_reqgnodes
which is a bit set describing the request modes that can be pro-
grammed YME_BRQ xxx literals, seevne_t ypes. h).

— u_int br_rel nodes
which is a bit set describing the release modes that can be pro-
grammed YME_BRL_xxXx literals, seesne_t ypes. h).

dma_caps
is a pointer to a structure describing the capabilities of the board’s
DMA controller. It is NULL if no DMA controller is present. The
structure consists of:

— vhi _bt _cap_t bustypes
which is a structure containing the VMEbus properties that can be
programmed for DMA transfers (segs/ vne_t ypes. h).

Note: Note that for compatibility reasons the variable till is called
bust ypes although bus propertiesare meant here.

— vmeaddr _t vne_align
which is the required alignment for the VMEbus start and end
address used for DMA transfers.

— | baddr _t buf _align
which is the required alignment for the DMA buffer’s start and end
address used for DMA transfers.

event _caps
is a pointer to a structure describing the capabilities of the board with
respect to events (ACFAIL, SYSFAIL, ABORT, etc.). It is NULL if
no event support is present. The structure consists of:

— event _t trigger_nmask
which is a bit mask describing the events that can be triggered
(including VMEDbus interrupts).

— event _t assert _nask
which is a bit mask describing the events whose VME status lines
can be asserted or negated (for example for ACFAIL or SYSFAIL).

mast er _caps
is a pointer to a structure describing the board’s capabilities with re-
spect to master transfers. The structure consists of:

— int nranges
which is the number of available master windows.

ﬁﬁ[E Solaris VMEbus Driver Page 127

A SOLECTRON SUBSIDIARY

VDI Functions

Device Driver Developer's Guide

u_int flags
which contains various flags.

If ASPACE_OVERLAP is set, a master window provides access to
all VMEbus address ranges, like for example on S4 based hard-
ware where the A24 space is taken from the last 16 MByte of the
A32 master window and the A16 space from the last 64K of the
A24 range.

TheODD_256Mflag indicates, in addition to the above, the special
implementation of the S4 chip on Force Computers’ CPU boards,
where overlapping of address ranges (thus access to A16 and A24)
is only possible if the A32 range lies on an odd 256 MByte VME-
bus address boundary (refer to Rebease Notes for details).

vhi bt _cap_t bt_wn
which is a structure containing information about the properties of
the master windows.

bt t bt _gl obal
which lists the bus properties that can be applied globally to all
master windows.

sl ave_caps
is a pointer to a structure describing the capabilities of the board’s
VMEDbus slave interface. The structure consists of:

i nt nranges
which specifies the number of available slave windows.

vhi _bt cap_t bt_wn
which is a structure containing information about the bus property
capabilities of the available slave windows.

bt _t bt_gl obal
which contains the bus properties that can be applied globally to all
slave windows.

vhi _bt cap_t bt _regslave

which is a structure containing information about the capabilities
of the slave window that provides access to the VMEbus interface
registers from VME.

The structure of typehi bt cap_t is used to describe properties
of objects that can have certain bus properties (usually master or
slave windows). It is necessary to distinguish between 3 possibilities:

the bus property can be enabled or disabled by the programmer,
the bus property is always enabled,

or the bus property is always disabled.

204936 9 — 0 January 2000

Page 128

Solaris VMEbus Driver F\/%[E

Device Driver Developer’'s Guide VDI Functions

This is expressed by the structure elements bt _change and
bt _fi x,which areboth of typebt t:

State of bit #nin

bt _change | bt _fix Implication

set cleared bus prop. #n can be switched on
or off

cleared cleared bus property #n is aways
switched off

cleared set bus property #n is aways
switched on

VARIABLES info

pointer to vdi _i nf o_t structure pointer. Do not change any con-
tents of this structure, asit is used globally throughout the VME nexus
and leaf drivers.

EXAMPLE {
vdi _info_t *m sc_info;
|f(vdi _info(& sc_info) != VDl _SUCCESS)
{
... I* ERROR */
}
}

ﬁﬁ[E Solaris VMEbus Driver Page 129

A SOLECTRON SUBSIDIARY

VDI Functions

Device Driver Developer's Guide

5.4.12 vdi_intr_acknowledge()

SYNTAX

DESCRIPTION

VARIABLES

RETURN
VALUES

#i ncl ude <sys/vdi.h>
int vdi _intr_acknow edge(dev_info_t *dip, u_int inunber);

vdi _intr_acknow edge()
returns the obtained interrupt vector if the interrupt acknowledge cycle
completed successfully.

dip
device info pointer of calling device
i nunber
specifies the index of the (level, vector) pair in the i nterrupts

property which describes the interrupt to be acknowledged. i nunber
iszero based (seeddi _add_i ntr (9F)).

VDI _SUCCESS
if successful.

VDI _| NVALI D
in case of an invalid parameter, most likely i nunber isout of limits.

VDI _FAI LURE
if the interrupt vector could not be obtained due to a VME bus error or
atimeout.

Page 130

Solaris VMEbus Driver F\/%[E

204936 9 — 0 January 2000

Device Driver Developer’'s Guide VDI Functions

EXAMPLE Fragment of nydri ver. conf:
grab VME level 1 by specifying a vector of -1
#

interrupts=1,-1

Device registers at VVE A32D32 @x40000000, size 4K
#
r eg=0x4d, 0x40000000, 0x1000

Fragment of driver source:
#i ncl ude <sys/types. h>
#i ncl ude <sys/sunddi . h>
#i ncl ude <sys/vdi.h>

static char *regs;

static dev_info_t *nydip;

static u_int ny_intr(caddr_t arg);

static int

mydriver_attach(dev_info_t *dip, ddi_attach_cnd_t cnd)

{

nydip = dip;

(...)

[* Install an interrupt handler “my_intr” for interrupt

* property 0. Pass the property number as argument

*/

if (ddi_add_intr(dip, 0, NULL, NULL, my_intr, 0)
1= DDI_SUCCESS)

{
cmn_err(CE_WARN, “failed to grab interrupt”);
return DDI_FAILURE;

}

[* Map the device registers */
(char*)ddi_map_regs(dip, 0, ®s, 0, 0);
()

}

static u_int my_intr(caddr_t arg)

{

int vec;

/* Do the IACK cycle and fetch the interrupt vector.
*“arg” is the inumber of the interrupt property.

*
/

vec = vdi_intr_acknowledge(mydip, (u_int)arg);

if (vec <0)

{

cmn_err(CE_WARN, “my_intr: IACK failed: %d", vec

);

}

[* Access the reg. to clear the interrupt (example) */
regs[0] = Oxff;
return DDI_INTR_CLAIMED;

ﬁﬁ[E Solaris VMEbus Driver Page 131

A SOLECTRON SUBSIDIARY

VDI Functions

Device Driver Developer's Guide

5.4.13 vdi_intr_generate()

SYNTAX

DESCRIPTION

VARIABLES

RETURN
VALUES

#i ncl ude <sys/vdi.h>
int vdi _intr_generate(int level, int vector);

vdi _intr_generate()
triggers a VMEDbus interrupt. It does not provide the possibility to set
the IACK time-out. For this reason, it will wait endlessly until the
IACK isfinished. The wait statusisinterruptible by asignal.

Seevdi _virqg_trigger() (p.156) for amore flexible interface.

Note: The generation of interrupts is hardware dependent.
Therefore, refer to the Release Notes whether this feature is
supported on the CPU board under consideration.

| evel
VME interrupt level to trigger

vect or

interrupt vector to use
VDI _SUCCESS

if successful.

VDI _FAI LURE
if parameters areinvalid or if action is not supported.

VDI _| NTR
if the wait state has been interrupted by a signal.

5.4.14 vdi_map(), vdi_unmap()

SYNTAX

Note: As of Solaris VMEbus Driver release 2.1 the
vdi _map_abs() function issupported. It isstrongly recommended
tousevdi _nmap_abs(), instead of vdi _map() .

#i ncl ude <sys/vdi.h>
u_int vdi _map(bt_t bt, vneaddr_t vmeaddr, u_int |en)
voi d vdi _unmap(u_int pfn)

Page 132

Solaris VMEbus Driver F\/%[E

204936 9 — 0 January 2000

Device Driver Developer’'s Guide VDI Functions

DESCRIPTION

VARIABLES

RETURN
VALUES

vdi _map()
alocates local bus addresses and sets up alocal- to VM Ebus bus map-
ping. If the required address range fits into an existing mapping, only a
reference count for that mapping is incremented.

This routine does not set up a mapping to actually access the VME
memory. It is intended to be used by drivers that want to provide a
mrap() entry for applications. The drivertsmap() routine has to
provide the correct page frame number when called, which can be ob-
tained byvdi _map() .

vdi _unmap()
frees local bus addresses and decrements reference count. If the refer-
ence count reach€s the corresponding entries in the VME MMU are
invalidated.

bt
bus properties as definedvme_t ypes. h (see section 6 “VME Bus
Properties” on page 159): e.gVME BT _A32, VME_BT_A24,
VVVE_BT_D8, orVME_BT_D32.

vireaddr
absolute VMEbus address to be mapped

I en
amount of VMEbus space to be mapped

pfn
page frame number, return valuevafi _map()

pfn
page frame number of local bus address

-1
There is no local bus address space available or no entries in the VME
MMU are available.

ﬁﬁ[E Solaris VMEbus Driver Page 133

A SOLECTRON SUBSIDIARY

VDI Functions Device Driver Developer's Guide

EXAMPLE {
u_int pfn;
int retval = 0;

pfn = vdi _map(vneplusdip, VME_BT_A32 | VME_BT_D32,
(vmeaddr _t) 0x60000000, (u_int)0x100);
if (pfn == (u_int)-1)

{ crm_err ("vnepl us_segmap: vdi _map failed\n"));
retval = EI NVAL;

}

el se

{
vdi _unmap(pfn);

}

return (retval);

5.4.15 vdi_map_abs(), vdi_map_regspec()

SYNTAX #i ncl ude <sys/vdi.h>

i nt vdi _map_abs(dev_info_t * dip,
bt t bt,
vneaddr _t vneaddr,
of f _t len,
u_int flags,
u_int *pfnp);

i nt vdi _map_regspec(
dev_info_t * dip,
i nt rnunber,
vneaddr _t off,
of f _t len,
u_int flags,
u_int *pfnp);

DESCRIPTION vdi _map_abs()
isan extensiontovdi _map() alowing extended configuration of the
mapping’s setup and providing error information.

vdi _map_regspec()
is an extension taldi _nmap_regs() which allows mapping in
VMEDbus space based on a drivaresgspec definition eg proper-
ty) without mapping the memory in the kernel space.

Both functions allocate local bus addresses and set up a local- to VMEbus
mapping. If the required address range fits into an existing mapping, only
a reference count for that mapping is incremented.

The functions do not set up a mapping to actually access the VME mem-
ory. :

204936 9 — 0 Januar

Page 134 Solaris VMEbus Driver F\/%[E

Device Driver Developer’'s Guide VDI Functions

They are intended to be used by drivers that want to provide an mmap()

entry for applications. The driverisnap() routine has to provide the
correct page frame number when called, which can be obtained by
vdi _map() .

The functions may be used to ensure that later mapping requests using
ddi _map_regs() do not fail due to temporary lack of resources (e.qg.
VME master window). This might happen because the local-to-VMEbus
mappings are not static, i.e. they are set up on demand.

VARIABLES dip
device info-pointer of the calling driver.

bt
bus properties as definedume_t ypes. h (see section 6 “VME Bus
Properties” on page 159):. e.gVME BT _A32, VME_BT_A24,
VME_BT_D8, orVME_BT_D32.
vireaddr
absolute VMEbus address to be mapped
I en
length to be mapped
of f
offset into the register space defined by the register set number
rnunber (seeddi _nmap_regs(9f) man pages)
I en
amount of VMEbus space to be mapped
flags
various flags controlling how the mapping is set up:
— VDI _MAPWAI T

If this flag is set and there is currently no master window available,
vdi _map_fl ags() waits until a master window is available.
The wait status is not interruptible unless explicitly requested (see
below).

— VDI _I NTERRUPTI BLE
The flag only has an effect\DI _MAPWAI T is also set. If so, the
wait status is interruptible by a signal.

pf np
physical page number where the VMEbus space has been mapped to if
the operation was successful

ﬁﬁ[E Solaris VMEbus Driver Page 135

SOLECTRON SUBSIDIARY

VDI Functions Device Driver Developer's Guide

RETURN VDI _SUCCESS
VALUES the request succeeded.
VDI _| NVALI D
invalid argument
VDI _NOSPACE

not enough space available on the host bus to map the requested VME-
bus area into or not enough resources on the VMEDbus interface avail-
able to fulfill the mapping request.

VDl _|I NTR
the VDI _MAPWAI T and VDI _| NTERRUPTI BLE flags were set and
the wait status was interrupted by asignal.

VDI _CONFLI CT
the mapping request could not be satisfied because it conflicted with
an existing mapping.

VDI _NOTSUP
the mapping request is not supported by the VM Ebus interface chip.
VDI _FAI LURE

the request failed for other reasons.

5.4.16 vdi_mbox_attach(), vdi_mbox_detach()

SYNTAX #i ncl ude <sys/vdi.h>
int vdi _nmbox_attach(vdi _nmbox_req_t *mboxreqgp)
int vdi _nbox_detach(int nboxnum

DESCRIPTION vdi _nbox_attach()
attaches and acquires a mailbox. It will program the mailbox registers
in the VMEbus interface chip, but will neither enable the access to it
nor the IRQ. Thevdi _nbox_r eq structure contains all information
necessary to set up the mailbox (see below).

vdi _nmbox_attach() returns a mailbox number which must be
used as parameter for the other mailbox routines.

Note: Notethat the mailbox interrupt isnot active after thiscall yet.
Enableit by callingvdi _nmbox_enabl e() .

vdi _nmbox_det ach()
Removes a malbox which has been adlocated by
vdi _nbox_attach() . It disables the access to the mailbox and re-
moves the mailbox interrupt handler.

Page 136 Solaris VMEbus Driver F\/%[E

204936 9 — 0 January 2000

Device Driver Developer’'s Guide VDI Functions

VARIABLES nboxr eqp
contains all information necessary to set up the mailbox. The structure
vdi _nbox_req_t isdefinedinvdi _types. h:

typedef struct vdi _nbox_req

(
bt t nmnbox_bt;
/* In/Qut: encoded address nodifier(s) */
ul ong_t nbox_of f set _def;
/* Qut: assigned nmil box address */
ul ong_t nbox_of fset _m n;
/* In: lower addr. of numilbox addr. range */
ul ong_t nbox_of f set _max;
[* In: incl. upper addr. */
ui nt _t nbox_access;
/* In/Qut: desired/actual access nodes */
uint_tnbox_irq;
/* In: requested IRQ priorities */
i nt (*mbox_handl er) (caddr _t);
/* In: pointer to nmbox | RQ handler */
caddr _t nbox_handl er _arg;
/* In/fQut: arg passed to the handler */
} vdi _nmbox_req_t;

nbox_ bt
bit field with each bit representing a desired address mode and data
sze. The #define statements for the bits are declared in
sys/vme_types. h (eg.: VME_BT_A24,VNME_BT_NPRV, €tc.; see
section 6 “WVME Bus Properties” on page 159). When returning, addi-
tional bits might be set, e.gVME_BT_NPRV when the CPU board
only supports supervisory and non-privileged accesses.

nmbox_of f set _def
returns the VMEbus address of the allocated mailbox if
vdi _nbox_attach() succeeds.

nbox_of f set _m n andnbox_of f set _max
specifies the address range in which the mailbox shall be allocated.

nbox_access
determines by what kind of access the mailbox is triggered. The possi-
ble values are defined sys/ vire_t ypes. h:

— VME_MB_RDif the mailbox shall be triggered by a read access,
— VVE_MB_WR if the mailbox shall be triggered by a write access,
— orVVE_MB_RDWR for both read and write access.

If this parameter is set @, it is implicitly set to a value supported by
the CPU board.

ﬁﬁ[E Solaris VMEbus Driver Page 137

A SOLECTRON SUBSIDIARY

VDI Functions Device Driver Developer's Guide

nbox_irq
is a set of preferred interrupt priorities. A mailbox may interrupt on
7 interrupt levels, which are equivalent to the 7 VMEbus interrupt lev-
els. The VMEbus interrupt levels are mapped to the respective proces-
sor interrupt levels according to the SPARC architecture. For example,
amailbox interrupt handler at level 7 runs at the same processor inter-
rupt level asaVMEDbus interrupt service routine for level 7.

The nmbox_irq parameter is a bit set of VME_MBOXI RQL,...,
VME_MBOXI RQ7 literals. If several literals are specified,
vdi _nbox_at t ach() selects the lowest level supported by hard-
ware. Setting this tO is equivalent to suggesting all supported inter-
rupt levels.

Upon successful returmbox_i r g reflects the actual interrupt level
selected. For further information on interrupt priorities, see
“vdi_mbox_iblock_cookie(), vdi_mbox_hilevel()” on page 143.

nbox_handl er
is called on receipt of the appropriate mailbox interrupt. If
nmbox_handl er is set taNULL, no interrupt handler will be installed
and no registers will be set up; it is assumed to be an advisory call,
then.

nbox_handl er _arg
argument of thebox_handl er routine. If0O is passed as argument,
the callback function will be called with the selected mailbox index as
argument.

RETURN vdi _nmbox_attach() returns one of the following values:

VALUES if successful a value equal or gredles returned. This is the identi-

fier needed for referencing the allocated mailbox.
A value less thaf indicates an error.

VDI _BUSY
a mailbox has been found which fits the given properties, but it is al-
ready allocated.

VDI | NVRANGE
the offset range in theme_nbox_r eq structure is invalid.

VDI _ | NVBT
a requested bus property flag is not applicable.
VDI _| NVACC

the access-mode is invalid.

204936 9 — 0 January 2000

Page 138 Solaris VMEbus Driver F\/%[E

Device Driver Developer’'s Guide VDI Functions

VDI _FAI LURE
one or more arguments are invalid. Possible reasons are that no mail-
box could be found which fits the given properties.

VDI _ NORESOURCES
no mailbox is available.

vdi _mbox_det ach() returnsone of the following values:
VDI _SUCCESS

successful.

VDI _FAI LURE
the mailbox number isinvalid.

VHI _| NVALI D
the index is out of range.

ﬁﬁ[E Solaris VMEbus Driver Page 139

A SOLECTRON SUBSIDIARY

VDI Functions Device Driver Developer's Guide

EXAMPLE vdi _nmbox_req_t mbox_req;
i nt mbox_num
ddi _i bl ock_cooki e_t nbox_cooki e;
krmut ex_t nmbox_nut ex;

/* Fill the mail box request structure */
nmbox_req. mbox_bt = VME_BT_D8| VME_BT_A1l6;
nmbox_req. mbox_offset_mn = (vneaddr_t)O0;
nbox_req. mbox_of fset _nmax = (vneaddr_t)Oxffff;

/* We don’t care about the access method and let
* the VDI choose it. */
mbox_req.mbox_access = 0;

[* Don't care for a specific irq level. The VDI
will

* choose the one with the lowest priority. */

mbox_req.mbox_irq = 0;

[* Specify the callback function. We pass zero as
* argument to indicate that the interrupt handler

* should pass us the mailbox id as argument */
mbox_req.mbox_handler = mbox_intr;
mbox_req.mbox_handler_arg = NULL;

if ((mbox_num = vdi_mbox_attach (&mbox_req)) < 0)
{
cmn_err(CE_WARN, “Failed to attach to
mailbox”);
return;

}

[* Our sample application is not capable of
handling
* hi-level interrupts */
if (vdi_mbox_hilevel(mbox_num)) {
cmn_err(CE_WARN, “hi-level interrupt not
sup.”);
return;

}

/* initialize mutex for callback function */
vdi_mbox_iblock_cookie(mbox_num, &mbox_cookie);

mutex_init(&mbox_mutex, “my mbox mutex”,
MUTEX_DRIVER, (void*)mbox_cookie

I* now enable the Mailbox
*/
vdi_mbox_enable(mbox_num);

[* Our callback function mbox_intr() is now
receiving
* mailbox interrupts */

Page 140 Solaris VMEbus Driver I XCE

A SOLEGTRON SUBSIDIARY

204936 9 — 0 January 2000

Device Driver Developer’'s Guide VDI Functions

5.4.17 vdi_mbox_enable(), vdi_mbox_disable()

SYNTAX #i ncl ude <sys/vdi.h>
int vdi _nbox_enabl e(int nboxnum
i nt vdi _nmbox_di sabl e(int mboxnumn

DESCRIPTION vdi _nmbox_enabl e()
enables the access to the mailbox address and the mailbox IRQ. This
can be used to enable the mailbox after a call to vime_nbox_-
attach() orvrme_nbox_di sabl e().

vdi _mbox_di sabl e()
disables the mailbox IRQ and the access to it.

VARIABLES nmboxnum
mailbox ID

RETURN VDI _ SUCCESS
VALUES if successful.

VDI _FAI LURE
if the mailbox number isinvalid.

VDI _BUSY
if the specified index refers to an item which has aready been allocat-
ed.

VDI _| NVALI D
if at least one of the parameters does not meet the restrictionsin the ca-
pability structure.

EXAMPLE see “vdi_mbox_attach(), vdi_mbox_detach()” on page 136

5.4.18 vdi_mbox_getinfo()

SYNTAX #i ncl ude <sys/vdi.h>
int vdi _nmbox_getinfo(vdi _nbox_info_t *nboxi nfop)

DESCRIPTION vdi _nbox_getinfo()
fills the mboxinfo structure with the information about the actual avail-
able mailboxes. Thedi _nmbox_i nf o structure is maintained in the
VDI layer. It is updated with everydi _nmbox_attach() and
vdi _nbox_det ach().

VARIABLES nboxi nf op
pointer to a structure containing all available information about mail-
boxes. Thevdi _nbox i nf o structure provides information about
available mailboxes and is definedvidi _t ypes. h:

ﬁﬁ[E Solaris VMEbus Driver Page 141

A SOLECTRON SUBSIDIARY

VDI Functions

Device Driver Developer's Guide

RETURN
VALUES

EXAMPLE

tyepdef struct vdi _nbox_info
{

i nt nmbox; /* nunber of avail abl e nboxes */
i nt nmbox_i nuse; /* nunber of attached nmboxes */
bt t nmbox_bt;/* encoded addr. nodifier(s) */
ul ong_t mbox_offset_def;/* default offset */
ul ong_t nbox_of fset_mask;/* changeable bits in default */
uint _t nbox_access;/* possible access nodes */
irq_t nmbox_irq;/* possible interrupt levels */
} vdi _nmbox_info_t;

nmbox
number of available mailboxes

nnmbox_i nuse
number of mailboxes which are currently attached

nbox_ bt
informs about the maximum available address modes and data sizes
(see section 6 “VME Bus Properties” on page 159).

nbox_of f set _def
offset which might be introduced by the CPU board’s register layout
(see below).

nbox_of f set _mask
indicates which bits of a mailbox address can be requested (see below).

nbox_access
access modes supported by the CPU bdribdbr WR

nmbox_irq
bit field indicating the possible mailbox interrupt levels (see
section 5.4.16 “vdi_mbox_attach(), = vdi_mbox_detach()” on
page 136).

nbox_of f set _def andnbox_of f set _mask
describe which address can be requested for the next available mail-
box. For example, if mbox_of fset def is 0x120 and
nmbox_of f set _mask is Oxf e00, selectable addresses &rel20,
0x320, 0x520, and so on.

Always returnsvDl _SUCCESS.

{ vdi _nmbox_info_t nbox_info;
i. f . (vdi _nbox_getinfo(&box_info) !'= VD _SUCCESS)
{ ... [* ERROR ¥/
}
y

Page 142

Solaris VMEbus Driver F\/%[E

Device Driver Developer’'s Guide VDI Functions

5.4.19 vdi_mbox_iblock_cookig(), vdi_mbox_hilevel()

SYNTAX

DESCRIPTION

VARIABLES

RETURN
VALUES

EXAMPLE

#i ncl ude <sys/vdi.h>
#i ncl ude <sys/sunddi . h>
int vdi _nmbox_i bl ock_cooki e(int nboxnum
ddi _i bl ock_cooki e_t *cookiep);
int vdi _nmbox_hilevel (int mboxnum);

vdi _mbox_i bl ock_cooki e()
initializes an iblock cookie for the given mailbox. The iblock cookie
can be used for setting up a mutex which is safe to use within the call-
back function of the mailbox.

vdi _mbox_hi |l evel ()
returns information indicating whether the callback function of the
given mailbox runsin high-level interrupt context or not.

These functions are equivaent to ddi _get _i bl ock_cooki e(9f)
andddi _intr_hil evel (9f) respectively.
nmboxnum
the mailbox ID obtained by vdi _nmbox_at tach() .
cooki ep
apointer to an iblock cookieto beinitialized.

vdi _mbox_i bl ock_cooki e() returnsone of the following values:

VDI _SUCCESS
if theiblock cookie wasinitialized successfully.
VDI _I NVALI D

if invalid parameters were specified, e.g. if mhoxnumdoes not denote
an existing mailbox identifier.

vdi _nmbox_hi | evel returns O if the callback function for the given
mailbox runs in low-level interrupt context, or 1 if it runs in high-level
interrupt context.

see “vdi_mbox_attach(), vdi_mbox_detach()” on page 136

ﬁﬁ[E Solaris VMEbus Driver Page 143

A SOLECTRON SUBSIDIARY

VDI Functions

Device Driver Developer's Guide

5.4.20 vdi_reg_read(), vdi_reg_write()

SYNTAX

DESCRIPTION

VARIABLES

RETURN
VALUES

#i ncl ude <sys/vdi.h>
int vdi _reg _read(u_l ong reg, u_long *value)
int vdi_reg wite(u_long reg, u_long value)

vdi _reg_read()
reads the contents of the VMEbus hardware register set specified by
r eg and storesitinval ue.

vdi _reg_wite()
writes the contents specified by val ue to the VMEbus hardware reg-
ister set specified by r eg.

reg
register identifier. For alist of the available register identifiers see the
respective interface’s header file (efgga5000. h). For register ar-
rays, the macr&ME_REGARR can be used to calculate the correct pa-
rameter for a given index.

val ue
register content to be written

VDI _SUCCESS
if successful.
VDI _FAI LURE
if an error occurred while accessing the register.
VDI _ALI GN
VDI _OFFSET
VDI _SI ZE

if the register alignment, offset, or size denoted by &g parameter
is invalid.

VDI _I NVALI D
if some other argument is invalid.

Page 144

Solaris VMEbus Driver F\/%[E

204936 9 — 0 January 2000

Device Driver Developer’'s Guide VDI Functions

EXAMPLE

{
int rc, retval = 0;
u_l ong regaddr;
u_l ong regval =0;

rc = vdi _reg wite(F50_REG FMB_ADDR, regval);
if (rc !'= VDI _SUCCESS)
{

}

rc = vdi _reg_read(F50_REG FMB_ADDR, ®val);
if (rc !'= VDl _SUCCESS)
{

}

rc = vdi _reg_read(VME_REGARR(F50_REG SBUS RANGE, 2),
®val);

retval = rc;

retval = rc;

if (rc != VDl _SUCCESS)
{

}

retval = rc;

return(retval);

54.21 vdi_regslave set(), vdi_regsave get()

SYNTAX

DESCRIPTION

VARIABLES

#i ncl ude <sys/vdi.h>
int vdi_regslave_set(bt_t bustype, vmeaddr_t vstart)
int vdi_regslave_get(bt_t *bustype, vmeaddr_t *vstart)

vdi _regsl ave_set ()
enables register access to the VME interface chip from the VMEbus
and sets the base address. Note that there might be hardware specific
side effects (e.g. concerning the FGA-5000: setting the register slave
base address al so affects the possible addresses for mailboxes).

vdi _regsl ave_get ()
returns the current status of the register slave window (i.e. whether it is
set or not and to which addressiit is set).

bust ype
bus properties of register slave (see section 6 “VME Bus Properties”
on page 159)

Note: Note that for compatibility reasons the variable still is called
bust ype although bus properties are meant, here.

ﬁﬁ[E Solaris VMEbus Driver Page 145

A SOLECTRON SUBSIDIARY

VDI Functions

Device Driver Developer's Guide

RETURN
VALUES

EXAMPLE

vstart
base address for slave registers

vdi _regsl ave_set () returnsone of the following values:
VDI _BUSY
if the mailbox isin use.

VDI _| NVALI D
if the parameters do not meet the requirements given in the slave capa-
bility structure.

VDI _ SUCCESS
if successful.

vdi _regsl ave_get () returns one of the following values:
VDI _RSWSET
if the register dave window is currently enabled.

VDl _RSWNOTSET
if the register dave window is currently not enabled.

{

int rc, retval;
veaddr _t vstart=0;
bt t bt=VME_BT_Al6;

rc = vdi _regslave_set(bt, vstart);
if (rc !'= VDI _SUCCESS)
{

/* error */

retval = rc;

}

rc = vdi _regsl ave_get(&vstart);
if (rc !'= VD _RSWBET)
{

/* error */

retval = rc;

}

return(retval);

Page 146

Solaris VMEbus Driver F\/%[E

204936 9 — 0 January 2000

Device Driver Developer’'s Guide VDI Functions

5.4.22 vdi_rmw()

SYNTAX #i ncl ude <sys/vdi.h>
int vdi_rmwm caddr_t kva, u_char *data);

DESCRIPTION vdi _rmM)
performs an atomic read-modify-write cycle on the specified address.
It isassumed that kva represents a properly mapped VME master win-
dow (e.g.viaddi _map_regs(9F)).

VARIABLES kva
kernel address where to perform a read-modify-write cycle

dat a
address used as data source and destination

RETURN VDI _SUCCESS
VALUES if successful.
VDI _| NVALI D
if no master window is defined which covers the specified address.
VDI _FAI LURE

if an error occurred, e.g aVME bus error.

EXAMPLE {
int rc;
caddr _t reg;
int mnor = getm nor (dev);
u_char rmwal = Oxff;
/* Map the address we want to RWV*/
if (ddi _map_regs (nydip, mnor, ®,
(of f _t) vmeaddr,
(of f _t) 0x1000)
I = DDl _SUCCESS)
{
/* error */
return ERROR,
}
if ((rc =vdi_rnmwv (reg, & mwal)) != VDI _SUCCESS)
{
/* VME bus error ? */
cmn_err(CE_WARN, “RMW at address 0x%x failed\n”,
vmeaddr);
}
else
{
* eval rmwval ... */
}
ddi_unmap_regs (vmeplusdip, minor, ®, vmeaddr,
(off_t) 0x1000);
}

ﬁﬁ[E Solaris VMEbus Driver Page 147

A SOLECTRON SUBSIDIARY

VDI Functions

Device Driver Developer's Guide

5.4.23 vdi_reg_space

DESCRIPTION

VARIABLES

RETURN
VALUES

#i ncl ude <sys/vne_types. h>
#i ncl ude <sys/vdi.h>
bt _t vdi _reg_space(dev_info_t *dip, int rnunber);

vdi _r eg_space converts the first field (the bus type) of an entry in

the driver'sr eg property into the corresponding set of bus property bits.
It also applies the settings done bydi transfer_set () call for

this driver.

dip
the device-info pointer of the calling driver.

rnunber
the offset into the driversreg property. Refer also to
ddi _map_regs(9f).

Upon success, a set\VE_BT_xxx bus properties is returned which re-
flects the properties of the register specification indexednynber .

If rnunber is invalid, or the VMEbus access properties it reflects are
not supported by the underlying hardware, the return code is zero.

5.4.24 vdi_smem_alloc(), vdi_smem_free()

SYNTAX

DESCRIPTION

#i ncl ude <sys/vdi.h>

int vdi _snmem.all oc(
uint_t |ength,
vdi _snmem handl e_t **handl ep);

int vdi _snmemfree(
vdi _snmem handl e_t *handl ep);

vdi _smem_ al | oc()
allocates shared memory for the VMEbudi _snem handl e con-
tains information necessary fordi _smem nap() and vdi _-
snmem free().

Note: Depending on the hardware architecture, shared memory
might be allocated non-cached. Once non-cached memory has been
allocated by vdi _snmem al | oc() , it may no longer be available for
normal use by the virtual memory system. This is because Solaris
removes memory from the free list once it has been set to non-
cached. However, the memory will be re-used for future dave
memory requests.

204936 9 — 0 January 2000

Page 148

Solaris VMEbus Driver F\/%[E

Device Driver Developer’'s Guide VDI Functions

vdi _smem free()
frees memory which has been allocated by vdi _snmem al | oc()
previously.

VARIABLES | ength
length of the desired allocation in byte.

handl ep
pointer to a pointer to a SMEMhandle to be allocated and filled in.

RETURN VDI _SUCCESS
VALUES memory successfully allocated

VDI _FAI LURE
dlocation failed

EXAMPLE {

vdi _snem handl e_t *handl ept;

if (vdi _smem all oc(0x100, &handl ept))

{
cm_err (CE_WARN,
"cannot allocate space for len %",
(i nt)0x100);
retval = -1;
}
el se
{
vdi _smem free(handl ept);
}

return (retval);

5.4.25 vdi_smem_map(), vdi_smem_unmap()

SYNTAX #i ncl ude <sys/vdi. h>
int vdi _smem map(
vdi _smemreq_t *smenreqp,
vdi _smemlimt *snmeminp,
vdi _snmem handl e_t *handl ep);

int vdi _smem unmap(
vdi _snmem handl e_t *handl ep);

DESCRIPTION vdi _smem map()
maps shared on-board memory to VMEbus. vdi _snem nmap() fol-
lowed by avdi _srmem enabl e() cal (p. 154) makes a pre-allocat-
ed region of DVMA memory accessible from the VMEbus. The caller

ﬁﬁ[E Solaris VMEbus Driver Page 149

A SOLECTRON SUBSIDIARY

VDI Functions Device Driver Developer's Guide

supplies arequested VM Ebus address range in the SMEMreguest struc-
ture. The VMEbus window isthen set up so that it enclosesthe DVMA
range. The limit structure describes the limitations of the VMEbus
master or requester.

vdi _smem unmap()
unmaps a shared on-board memory to VM Ebus mapping and disables
access to the shared on-board memory. vdi _snem unmap() may
be called after vdi _smem map() .

VARIABLES smenr eqp
pointer to the shared memory request structure. The vdi _smem req
structure isdefined insys/ vdi _t ypes. h:

typedef struct vdi_snmemreq

{
bt _t snenr _bt;
vneaddr _t snenr _of f set;
uint _t snmenr_size;
uint _t snenr_flags;

}

vdi _snem req_t;
Table 11 vdi _snmem r eq struct members

snenr _bt Encoded bus capahilities (see section 6 “VME Bus
Properties” on page 159)

o

snenr _of f set Desired VMEbus address

Page 150 Solaris VMEbus Driver F\/%[E

204936 9 — 0 January 2000

Device Driver Developer’'s Guide

VDI Functions

Table 11

vdi _snmem r eq struct members (cont.)

smenT _si ze

Shared memory size

snmenr _fl ags

Information for mapping routines. There are 3 flags
defined: SMEM FI XED, SMEM PADDR, and
SMEM VADDR. With driver Version 2.0.x only
SMVEM _VADDR is supported and must be set. With
driver Version 2.1 the flags are defined as follows:
SMEM_PADDR

reserved for future extensions.

SMEM VADDR
If this flag is set, the standard method of setting
up the shared memory buffer is used.

Due to hardware limitations, the VM Ebus address
to which the shared memory is actually mapped
might differ from the requested one. Refer to the
Release Notes for information on address offsets
which are to be expected for the hardware under
consideration.

Currently this flag must be set. It may be com-
bined with the flags described below.

SMEM FI XED
If this flag is set, the VMEbus nexus driver sets
up the shared memory at exactly the requested
VMEbus address, provided that the requested
VMEDbus address is aligned to page boundary.

The decoded VMEbus address range might be
larger than the shared memory address range.

Using this flag might fragment system resources
more than not using the flag.

See the Release Notes whether this flag is sup-
ported for the CPU board under consideration.

A SOLECTRON SUBSIDIARY

Solaris VMEbus Driver

Page 151

VDI Functions Device Driver Developer's Guide

smem i nmp
pointer to the shared memory limit structure. The structure
vdi _smem | i misdefinedinvdi _t ypes. h. Driver versions 2.0.x
ignore this structure. With driver version 2.1 this structure is used to
support the specification of memory addresses via SMEM_FI XED (see
table 11 “vdi_smem_req struct members” on page 150).

typedef struct vdi_snemlim

{
ulong_t slimsnmemlo;
ulong_t slimsnmemhi;
ulong_t slimuvme_|o;
ulong_t slimuvme_hi;
uint_t slimvme_size;

}

vdi _snmemlimt;

Table 12 vdi _smem_| i mstruct members
slimsnmemlo Low range of mapped shared memory
sli m_smem hi Upper inclusive bound
slimvne_lo Low range of decoded VMEbus range
sli m.vne_hi Upper inclusive bound
slimyvne_size Maximum size of decoded range
handl ep
pointer to a pointer to 8MEMhandle to be allocated and filled in.
RETURN VDI _SUCCESS
VALUES memory was mapped successfully.
VDI _FAI LURE

handle contains invalid values, or the VME interface hardware is not
capable to cover the requested address range.

VDI _NOSPACE
the resources which are required to generate the mapping are not avail-
able.

VDI _CONFLI CT
another window with the same bus properties exists, whose address
range overlaps with the one needed to fulfil the actual request.

204936 9 — 0 January 2000

Page 152 Solaris VMEbus Driver F\/%EE

A SOLEGTRON SU

Device Driver Developer’'s Guide VDI Functions

EXAMPLE /* slave nemory limtations */
static vdi _smemlimt snemlim=
{

(ul ong_t) 0x00000000, /* Low range of mapped smem */
(ulong_t) -1, /* High Limt, upper inclusive bound */
(ul ong_t) 0x00000000, /* Low range decoded VME range */
(ulong_t) -1, /* High limt, upper inclusive bound */
(uint_t) -1 /* Max size of decoded range */

b
{
vdi _snem handl e_t *handl ept;
vdi _snem req_t snenreq;
[* Allocate some nmenory for the slave wi ndow */
if (vdi _smem al |l oc(0x100, &handl ept))
{
cm_err (CE_WARN,
"cannot allocate space for len %",
(i nt)0x100);
return ERROR,
}
/* Fill request struct */
smenr eq. sment _bt = VME_BT_A32 | VME_BT_D32;
sment eq. sent _of f set = 0x60000000;
sment eq. sment _si ze = 0x100;
smenr eq. sment _fl ags = SMEM VADDR,;
/* Map and enabl e the slave nmenory */
if (vdi _smemnmap(&snmenreq, &nmeml|im handl ept))
{
[* error */
vdi _snmem free(handl ept);
return ERROR
}
i f (vdi _smem enabl e(handl ept))
{
[* error */
vdi _snmem unmap(handl ept) ;
vdi _snmem free(handl ept);
return ERROR
}
/* Renove the slave nenory */
vdi _smem unmap(handl ept) ;
vdi _snem free(handl ept);
}

return CK;

ﬁi[E Solaris VMEbus Driver Page 153

A SOLECTRON SUBSIDIARY

VDI Functions

Device Driver Developer's Guide

5.4.26 vdi_smem_enable()

SYNTAX

DESCRIPTION

VARIABLES

RETURN
VALUES

EXAMPLE

#i ncl ude <sys/vdi.h>
int vdi _snem enabl e(vdi _snmem handl e_t *handl ep);

vdi _snmem enabl e()
enables access to the shared on-board memory. May only be called af -
tervdi _snem map() .

handl ep
pointer to a SMEMhandle.

VDI _SUCCESS
memory successfully enabled or disabled

VDI _FAI LURE
handle contains invalid values

see section 5.4.25 “vdi_smem_map(), vdi_smem_unmap()” on page 149

5.4.27 vdi_transfer_set(), vdi_transfer_get()

SYNTAX

DESCRIPTION

#i ncl ude <sys/vdi.h>

int vdi _transfer_set(dev_info_t *dip, bt_t tm)
int vdi _transfer_get(dev_info_t *dip, bt_t *tm)
int vdi _transfer_free(dev_info_t *dip)

vdi _transfer_set()
controls in parts the setup of master windows for the specified driver.
This function is the only way to pass extended information about mas-
ter window properties to the VME nexus driver via the standard So-
laris mapping caltidi _nap_regs(9f).

Only the following subset of bus property literals can be used by this
function: VME_BT_PF, ~_PRI AUTO, ~_ PROGAUTO, ~_UNALI GN,

~_ WP (see section 6.3 “Miscellaneous Bus Properties” on page 162).
These are combined by the bit maE_BT_ TMASK.

— The subset of available bus property literals may be restricted by
hardware dependencies: not every hardware allows to set the bus
properties on a per range basis.

— If a driver does not usevdi transfer_set() and
VME: vire_nmast er _def aul ts is not used il et ¢/ system
(see section 3.1 “Configuration” on page 17), the standard proper-
ties of the VME nexus driver will be used.

— If vdi _transfer_set () is used, the properties defined when
callingvdi _transfer_set () will be used for all VME master
windows that will be set up vialdi _map_regs(9f) or

204936 9 — 0 January 2000

Page 154

Solaris VMEbus Driver F\/%[E

Device Driver Developer’'s Guide VDI Functions

vdi _map() for the specified driver. Existing mappings are not
affected.

vdi _transfer_get ()
returns the mode reservations for the specified device.

vdi _transfer_free()
deletes the transfer mode reservation for the specified driver. This
means that the VME nexus driver’s default values will be used when
master windows are set up for this driver usitty _nmap_r egs(9f)
orvdi _map().

VARIABLES dip
device's information pointer: specifies the driver

tm
transfer modes to set. Only the bits masked/klf_BT_TMASK are
used (sesys/ vne_t ypes. h).

RETURN vdi _transfer_get () returnsVDI _SUCCESS if a transfer mode
VALUES was set for the specified driverdbl _FAI LURE if not.

vdi _transfer_free() always return¥Dl _SUCCESS.

vdi _transfer_set () returnsVDlI _SUCCESS if successful. It re-
turnsVDI _FAI LURE if the maximum number of transfer modes is ex-
ceeded or no kernel memory can be allocated.

EXAMPLE {
bt t bt = VNVE BT WP

/* Enable wite posting for all future master w ndows,
* disable all other transfer nodes

*/

if (VDI _SUCCESS != vdi _transfer_set(vmeplusdip, bt))

{
... I* ERROR */
}
if (VDI_SUCCESS != vdi_transfer_get(vmeplusdip, &bt))
{
... I* ERROR */
}

/* Use the Nexus’ default settings for future master
* windows

*/

(void)vdi_transfer_free(vmeplusdip))

ﬁﬁ[E Solaris VMEbus Driver Page 155

SOLECTRON SUBSIDIARY

VDI Functions

Device Driver Developer's Guide

5.4.28 vdi_virg_trigger(), vdi_virg_ackwait()

SYNTAX

DESCRIPTION

VARIABLES

#i ncl ude <sys/vdi.h>

int vdi _virg_trigger(int level, int vector,
long timeout, u_int flags);
int vdi _virg_ackwait (int level, long timeout, u_int flags);

Asof SolarisVMEbus Driver release 2.1, assertion of VMEbus interrupts
and specifying a time-out for the IACK cycle is supported in general by
the software package.

Note: Not all CPU boards support thisfeature. Refer to the Release
Notesfor limitations and hardwar e dependencies.

If the requested time expires, an error is reported. This may be necessary
for error recovery if the VMEbus interrupt handler does not acknowledge
interrupts as it is expected to do.

The timer resolution isin system ticks, e.g. it is 10 msin Solaris 2.5.

vdi _virqg_trigger()
triggers an interrupt and waits until the acknowledge cycle has fin-
ished.

vdi _virg_ackwai t ()
waits until the most recent interrupt request has been acknowledged.
Thisisnot necessary if vdi _virq_trigger () hassuccessfully ac-
knowledged the interrupt already.

| evel
interrupt level to betriggered

vect or
interrupt vector to be triggered (only for vdi _virq_trigger())

ti meout
isavaluein clock ticks that specifies the maximum time to wait for the
IACK cycleto complete.

flags
is a bit mask which can be used to control various properties. The fol-
lowing bits are defined:

— VI ACK_DONTWAI T

If set to 1, the function returns immediately without waiting for the

IACK cycle to finish. This flag is mutually exclusive with the

VI ACK_ENDLESS flag. SettingVl ACK_DONTWAI T makes the
ti meout parameter obsolete.

— VI ACK_ENDLESS

If set to 1, the function does not return until the IACK cycle ha

Page 156

Solaris VMEbus Driver F\/%[E

2045{8 9 - 0 January 2000

Device Driver Developer’'s Guide VDI Functions

been completed. This flag is mutually exclusive with the
VI ACK_DONTWAI T flag. Setting this flags makes the t i neout
parameter obsol ete.

— VI ACK_| NTERRUPTI BLE
If set to 1, the function may be interrupted by a signal while wait-
ing for an interrupt acknowledge. If set to O, it is not interruptible.

— P_VI ACK_DONTWAI T (vdi _virqg_trigger() only)
If some thread is still waiting for an IACK to be completed at the
timevdi _virq_trigger() is called, the calling thread might
block until the other thread either completes the IACK successfully
or decides to stop waiting. If it decides to stop waiting, the behav-
ior of vdi_virqg_trigger() depends on the
P_VI ACK_DONTWAI T flag.

If P_VI ACK_DONTWAI T is cleared,vdi _virq_trigger()
waits for the old IACK to be completed with the given wait crite-
ria. If a timeout occurs, the function fails with return value
VDI _BUSY. If no timeout occurs (meaning that the previous
IACK has finally completed in time), it will trigger the requested
interrupt and use the timing criteria again to wait for its own IACK
cycle to complete. If the timing citeria are violated this time,
vdi _virqg_trigger() wil fail with return value
VDI _TI MEQUT.

If P_VI ACK DONTWAI T is set,vdi _virqg_trigger() fails
immediately with return valueDl _BUSY if it detects that a pend-
ing IACK prevents the interrupt to be triggered and the originator
has stopped waiting for it.

RETURN VDI _SUCCESS

VALUES the interrupt was triggered bydi _virqg_trigger() and the
IACK cycle completed successfully (unlegsACK_DONTWAI T was
set in the request structure; in this case, the function returns
VDI _SUCCESS immediately after successfully asserting the inter-
rupt).

VDI _BUSY
The last IACK cycle on this level has not been finished yet. Note that it
is not possible to remove an interrupt request that has not been ac-
knowledged yet because this is forbidden by the VMEbus specification
(see also the description fBr VI ACK_DONTWAI T above).

VDI _TI MEQUT
The IACK cycle for the given request did not complete in the request-
ed amount of time.

VDI _FAI LURE
invalid parameters

A SOLECTRON SUBSIDIARY

ﬁﬁ[E Solaris VMEbus Driver Page 157

VDI Functions

Device Driver Developer's Guide

Page 158

Solaris VMEbus Driver F\/%[E

A SOLEGTRON SUBSIDIARY

204936 9 — 0 January 2000

VME BusProperties

6 VME BusProperties

Solaris bus types

Extended
bus type
concept:
bus property

Global and per-
range bus
properties

When dealing with VMEbus accesses, be it master/slave windows, mail-
boxes, DMA transfers, or others, it is necessary to specify the properties
of the VMEbus transaction (like for example address space or data).

Traditionally, Solaris defines the “bus types” mentioned above in
{fusr/include/sys/bustypes. h. All Solaris bus types are sup-
ported within the VME driver. However, the definitions do not cover all
aspects and features provided by Force Computers’ VMEbus drivers.

To cover all aspects and features provided by Force Computers’ VMEbus
drivers, an extension of the bus type concept has been designed for use
with the application and driver interfaces described in this manual. To
easily distinguish the 2 concepts, the Force Computers extension uses the
term “bus property” instead of “bus type”.

A bus property as supported by Force Computers’ VMEbus drivers
* is abitset of typbt _t,

» with bits denoted by th& ME_BT_pr op macros described in this
section and defined imys/ vime_t ypes. h.

To allow access to the VMEDbus, the driver has to set up master windows.
Depending on the hardware, some properties can be applied to each mas-
ter window individually (for example the VMEbus address space), others
only globally to all windows. The first are referred to as “per range” bus
properties, the latter as “global” bus properties.

The same applies to slave windows, which are needed to operate the
board in slave mode.

A SOLECTRON SUBSIDIARY

ﬁﬁ[E Solaris VM Ebus Driver Page 159

Address Spaces YME_BT_Axx and VME_BT_CRCSR VME Bus Properties

6.1 Address Spaces ¥YME BT Axx and VME_BT_CRCSR

The VME_BT_Axx and VME_BT_CRCSR literals define the address
space where a data transfer takes place.

» Interpretation for master windowgME_BT_Axx literals specify the
address space used for VMEbus master accesses. A master window
has one and only one address space property.

* Interpretation for slave windows: A slave window can have one or
more of the/ME_BT_Axx bus properties, meaning that it will accept
transfers in each of them. The same is true for mailboxes, which can
reside in multiple address spaces as well.

VME_BT_A16 A16 address space (AM cod23,, and2D).
VME_BT_A24 A24 address space (AM cod&8,; including3F,()
VME_BT_A32 A32 address space (AM cod@8,4 includingOF)
VME_BT_A40 A40 address space (future extension)
VME_BT_A64 A64 address space (future extension)
VME_BT_CRCSR Allows access to the CR/CSR address space

VME_BT_AMASK A bit set combining aVME_BT_Axx and VME_BT_CRCSR literals.

204936 9 — 0 January 2000

Page 160 Solaris VMEbus Driver F\/%[E

VME BusProperties

Data Modes -VME_BT_Dxx

6.2 Data Modes -VME_BT_Dxx

VMVE_BT D8
VME_BT D16
VMVE_BT_D32
VMVE_BT_D64
VMVE_BT_DAUTO
VME_BT BLT
VME_BT_MBLT
VME_BT_2EVMVE

VME_BT_DMASK

The VME_BT_Dxx literals describe the way data is transferred, i.e. the
data width or the kind of burst (block) transfer.

Interpretation for master windows: A master window can be marked
with any combination o¥/ME_BT_Dxx literals, each one denoting an
access width from the host bus (e.g. SBus) that can be transformed
into the corresponding access width on the VMEDbus. This is also true
for local bus burst transfers, which may cause a VMEDbus block trans-
fer if the corresponding bus property bit is set.

If the VME_BT_DAUTO property is set, the VMEbus interface hard-
ware will resize accesses of widths which do not appear as
VME_BT_Dxx literal into accesses that are possible. Example:

A master window with data bus properties
VMVE_BT_D8| VME_BT_DAUTO resizes all kinds of local bus data
widths to 8 bit accesses on the VMEDbus.

Interpretation for slave windows and mailboxes: The data bus prop-
erty literals denote the VMEDbus access widths which are decoded by
the slave window to some kind of local bus master access or which
cause a mailbox interrupt, respectively.

8 data bits, single cycle transfer.

16 data bits, single cycle transfer.

32 data bits, single cycle transfer.

64 data bits, single cycle transfer (future extension).

Automatic data resize. This is only meaningful for master windows.

Block transfer.

Multiplexed block transfer.

2eVVME transfer.

A bit set combining all literals mentioned abowdVE_BT_D8, ...,
VVE_BT_2EVME).

ﬁﬁ[E Solaris VMEbus Driver Page 161

A SOLECTRON SUBSIDIARY

Miscellaneous Bus Properties VME BusProperties

6.3 Miscellaneous Bus Properties

The literas described in this section define miscellaneous VMEbus bus
properties.

* The interpretation for master windows depends on other bus property
bits being set:

— If the “write posting” bus property bit is set for a master window,
the VMEbus interface hardware will acknowledge write transac-
tions to the VMEbus immediately without waiting for the access to
finish. This typically increases the transfer speed, but may cause
problems when an error conditions occurs.

— If the “data prefetch” bus property bit is set, the VMEbus interface
hardware will perform “read ahead” on the VMEDbus.

— If the VME_BT_NPRV bus property bit is set, non-privileged
VMEbus AM codes are generated. If it is cleared, privileged VME-
bus AM codes are generated.

— If the VME_BT_PROG bus property bit is set, program AM codes
are generated. If it is cleared, data AM codes are generated respec-
tively.

— There are 2 programmable AM codes available for example for
FGA-5100 based CPU boarddéVE BT PAMCx literals specify
the address space of the programmable AM code used for VMEDbus
master accesses.

» The interpretation for slave windows depends on other bus property
bits being set:

— If the “write posting” bus property bit is set for a slave window,
VMEDbus write accesses to the slave window will be acknowledged
immediately to the originating master without waiting for the
transaction to finish. This typically increases the transfer speed, but
causes problems when an error conditions occurs.

— If the “data prefetch” bus property bit is set for a slave window, the
VMEDbus interface hardware will perform “read ahead” on the host
bus.

— If the VME_BT_NPRV bus property bit is set, both privileged and
non-privileged VMEbus AM codes will be accepted. If it is
cleared, only privileged AM codes will be accepted.

— If the VME_BT_PROG bus property bit is set, both data and pro-
gram VMEbus AM codes will be accepted. If it is cleared, only
data AM codes will be accepted.

VME_BT_MVASK A bit mask combining all miscellaneous bus properties.

204936 9 — 0 January 2000

Page 162 Solaris VM Ebus Driver F\/%[E

VME BusProperties

Miscellaneous Bus Properties

VME_BT_PAMASK A bit set combining all VME_BT_PAMCx literals.

VME_BT_PAMCL
=1
=0

VMVE_BT_PAMC2
=1
=0

VME_BT_PF

First programmable AM code.
selected
de-selected

Second programmable AM code.
selected
de-selected

Data read prefetch enable.
enable
disable

VME_BT_PRI AUTO Automatic privileged/non-privileged AM code generation, depending

VME_BT_PROG
=1
=0

on the state of the processor. Only valid for master windows.

generate supervisory or user AM codes depending on the mode the pro-
cessor is currently running in

disable this feature

Program access AM code enable.
generate program AM codes
generate data AM codes

VME_BT_PROGAUTO Automatic program/data AM code generation depending on the type of

VME_BT_NPRV

VME_BT_TMASK

access the processor does. Only valid for master windows.
generate program or data AM codes depending on the type of access
disable this feature

Non-privileged AM code enable.

Compatibility note VME_BT_NPRV

Note: The name of VME_BT_NPRV used to be VME_BT_USER in
previous releases. Both names can be used though VME_BT_NPRV is
preferred.

generate non-privileged (user) AM codes
generate privileged (supervisory) AM codes
A bit mask combining all bus properties which can be used in combina-

tion with the vui _transfer_node_set/~_get functions (see
page40) and the vdi _transfer_set/~_get functions (see

ﬁﬁ[E Solaris VM Ebus Driver Page 163

A SOLECTRON SUBSIDIARY

Miscellaneous Bus Properties VME BusProperties

page 154): VME_BT_PF, ~ PRI AUTO, ~ PROG, ~_ PROGAUTO,
~ UNALI GN, ~_USER, ~_WP.

VME_BT_UNALI GN Unaligned accesses possible
=1 alow unaligned accesses
=0 prohibit unaligned accesses

VME_BT_USER See“Compatibility note VME_BT_NPRV” on page 163.

VME_BT_WP Write posting enable.
=1 enable
=0 disable

VME_BT_RESERVED Reserved bit.

Page 164 Solaris VM Ebus Driver F\/%[E

204936 9 — 0 January 2000

System M essages Panic M essages

7/ System Messages

This section lists the drivers’ system messages and documents possible
causes.

7.1 Panic Messages

PANI C. SBus virt. address: xx (no | OVWUJ nappi ng?)
A VMEbus master accessed the local CPU’s slave window and an er-
ror occurred. The error was not acknowledged to the master because
the slave window was marked i t e post ed. For information on
changing the system’s behavior, see section 5.3 “Nexus Driver Fault
Handling” on page 107.

PANI C. no sbus node
Thesbus node is missing in the device tree.

WARNI NG S-to-VME Wite Posting error at vme-Xxx
PANI C. panic

A VMEbus write access performed via a master window marked as
write posted resulted in a bus error. For information on changing
the system’s behavior, see section 5.3 “Nexus Driver Fault Handling”
on page 107.

PANI C. VME=xXxX BT=xxx
A VMEDbus write access resulted in a bus error. For information on
changing the system’s behavior, see section 5.3 “Nexus Driver Fault
Handling” on page 107.

ﬁﬁ[E Solaris VM Ebus Driver Page 165

A SOLECTRON SUBSIDIARY

Warnings

System M essages

7.2 Warnings

Errors on the
VMEbus

VMEDbus transactions which terminate with a BERR are usually logged
on the console. The information printed consists of

+ the VMEDbus address where the fault occurred, and

* a “bus property” bit set (“BT=" or “BP="), which basically encodes
the VME AM code (see section6 “VME Bus Properties” on
page 159).

Beneath the VMEDbus related information, there might be additional mes-
sages visible which show the errors reported by the underlying bus nexus
driver.

WARNI NG Async Fault from S-to-VME (superv.)

WARNI NG VME=xx BT=yy
Caused by a kernel access an asynchronous write error occurred on the
VMEDbus. The behavior on write errors can be controlled via the
/ et c/ syst emfile (see section 5.3 “Nexus Driver Fault Handling”
on page 107).

WARNI NG Async Fault from S-to-VME (non-priv)

WARNI NG VME=xx BT=yy
Caused by a process accessmai@p() an asynchronous write error
occurred on the VMEbus. The behavior on write errors can be con-
trolled via the/ et c/ syst emfile (see section 5.3 “Nexus Driver
Fault Handling” on page 107).

WARNI NG VME synchronous error: ctx=xx VME=yy BT=zz
Caused by a kernel access a read error occurred on the VMEbus. The
behavior on kernel read errors can be controlled vid ¢tec/ sys-
t emfile (see section 5.3 “Nexus Driver Fault Handling” on page 107).

WARNI NG L-to-VME Wite Posting error at vme XXX
A write posted VMEbus master access caused an error and the origina-
tor of the access (the process) could not be determined. The behavior
on write posted errors can be controlled viaftle¢ c/ syst emfile
(see section 5.3 “Nexus Driver Fault Handling” on page 107).

WARNI NG (VME): VME Sl ave to Local Bus posted wite error
A VMEbus master accessed the local CPU via a slave window which
was set up as write posted and an error occurred. The behavior on write
posted slave access errors can be controlled viAghe/ syst em
file (see section 5.3 “Nexus Driver Fault Handling” on page 107).

WARNI NG vrectl: could not send sig. Xxx to process yyy
A process has set up a signal for a VMEbus event but did not release it
properly. The event occurred and the driver detected that the process
that owned the event does not exist any more. This message will aﬁa
pear only once, the driver releases events after this situation has dc
curred. :

204936 9

Page 166

Solaris VM Ebus Driver F\/%[E

System M essages

Warnings

WARNI NG vector xxx handl es nore than one VME | RQ
One interrupt vector is defined for several interrupt levels. Make sure
that thisis what you intended.

WARNI NG spurious VMEbus interrupt on |evel xx, vec yy
An interrupt acknowledge cycle resulted in an interrupt vector for
which no interrupt handler was defined. Make sure you specified the
correct interrupt vector for your hardwareinthe drj ver. conf file.

WARNI NG vre: no interrupt vector for VME | RQ xx
A device has triggered an interrupt but didn’t provide an interrupt vec-
tor.

WARNI NG vre_attach: vdi_init failed
or

WARNI NG vdi _init: vhi_init failed
Proper hardware was detected by the VME nexus driver but it could
not be initialized.

WARNI NG VME: VME DMA not possible, set the slavew n
property in VME conf

Some device driver tried to initiate a DMA transfer to the local CPU
by means of the DDI DMA interface. To do so, it is necessary to set
thesl avew n property in the configuration file of the VMEbus nex-
us driver (see section 5.1.2 “Slave Window Property” on page 103).

WARNI NG VME DMA ERR on VMEbus addr xx
A DMA transfer aborted because a bus error on the VMEbus occurred.

WARNI NG VME DVA ERR on | ocal addr xx
A DMA transfer aborted because a bus error on the host bus (e.g.
SBus) occurred.

NOTI CE: vrepl us_segmap: No reg property
A mapping request failed because there was &g property in the
configuration file ofvirepl us. Normally, it should not be necessary
to touch the eg property entries in this file.

WARNI NG map_sl ave(): cannot allocate fdma space for |en xxx
The fast DMA driver failed to allocate a DMA buffer of the requested
size.

WARNI NG vrreplus_intr: ringbuffer is full, dropped interrupt <n>
The vmeplus driver uses a ring-buffer to process information for high
level interrupts. If the driver gets more interrupts than can be handled,
the ring buffer may overflow and interrupt events get lost. The ring
buffer size may be incremented by setting ihepl us: rb_si ze
variable in/ et ¢/ syst emappropriately.

WARNI NG vne0O: <driver>: WME | evel <n> in use or grabbed
A device driver has made an attempt

— to either grab the specified VMEDbus interrupt level, but this level is
already used by another interrupt handler,

ﬁﬁ[E Solaris VM Ebus Driver Page 167

A SOLECTRON SUBSIDIARY

Notices System M essages

— or to set up a vectored interrupt handler for the specified level, but
this level is already grabbed by another interrupt handler.

7.3 Notices

NOTI CE: VME fault handling is OFF!
This message occurs if th&vE: vire_f aul t _hndl _of f flag has
been set if et ¢/ syst em Errors on the VMEbus will most likely
cause the system to panic.

NOTI CE: vdi _smem map: SMEM FI XED not supported
or

NOTI CE: vdi _smem map: PADDR not supported
Allocation of slave memory or DMA buffer space failed because the
f I ags parameter of the request contains an entry that is currently not
supported on the underlying architecture.

204936 9 — 0 January 2000

Page 168 Solaris VM Ebus Driver F\/%[E

Product Error Report

PRODUCT: SERIAL NO.:

DATE OF PURCHASE: ORIGINATOR:
COMPANY: POINT OF CONTACT:
TEL.: EXT.:

ADDRESS:

PRESENT DATE:

AFFECTED PRODUCT:
0 HARDWARE 0 SOFTWARE 0 SYSTEMS

AFFECTED DOCUMENTATION:
0 HARDWARE 0 SOFTWARE 0O SYSTEMS

ERROR DESCRIPTION:

THISAREA TO BE COMPLETED BY FORCE COMPUTERS:

DATE:
PR#:

RESPONSIBLE DEPT.: [0 MARKETING [J PRODUCTION
ENGINEERING O O BOARD U SYSTEMS

[0 Send this report to the nearest Force Computers headquarter listed on the back of

the title page.

	Solaris VMEbus Driver
	Using This Manual
	Table a History of manual editions
	Table b Fonts, notations and conventions

	1 Safety Notes
	2 Introduction
	Figure�1 Architecture of the Solaris VMEbus Driver package
	Figure�2 Sample device access hierarchy
	2.1 Software Interface Features
	2.2 Comparing the Old-Style to the New-Style Driver
	2.2.1 vme_xxx() Functions
	2.2.2 Device Names
	Table 1 Changed device names for block and mblock devices

	2.2.3 ioctl()
	Table 2 ioctl() support by the new-style driver�
	Table 3 Relating old-style to new-style driver ioctl() requests�

	2.3 Examples

	3 Installation and Configuration Guide
	3.1 Configuration
	3.2 Basic Test of the Driver
	3.3 Troubleshooting
	3.4 Limitations

	4 Application Programmer’s Guide
	4.1 vmeplus
	4.1.1 open(), close()
	4.1.2 read(), write()
	4.1.3 mmap(), munmap()
	4.1.4 ioctl()
	4.1.5 vui_intr_ena(), vui_intr_dis()
	4.1.6 vui_rmw()
	4.1.7 vui_�transfer_�mode_�set(), vui_transfer_mode_get()

	4.2 vmedma
	4.2.1 open(), close()
	4.2.2 read(), write()
	4.2.3 ioctl()
	4.2.4 vui_dma_malloc()

	4.3 vmefdma
	4.3.1 open(), close()
	4.3.2 read(), write()
	4.3.3 mmap(), munmap()
	4.3.4 ioctl()
	4.3.5 vui_fdma_malloc(), vui_fdma_free()

	4.4 vmedvma
	4.4.1 open(), close()
	4.4.2 read(), write()
	4.4.3 mmap(), munmap()
	4.4.4 ioctl()
	4.4.5 vui_slave_map(), vui_slave_unmap()

	4.5 vmectl
	4.5.1 open(), close()
	4.5.2 ioctl()
	4.5.3 vui_abort_signal(), vui_abort_wait()
	4.5.4 vui_acfail_signal(), vui_acfail_wait()
	4.5.5 vui_arb_mode_set(), vui_arb_mode_get()
	4.5.6 vui_board()
	4.5.7 vui_bus_rel_mode_set(), vui_bus_rel_mode_get()
	4.5.8 vui_bus_req_level_set(), vui_bus_req_level_get()
	4.5.9 vui_bus_req_mode_set(), vui_bus_req_mode_get()
	4.5.10 vui_interface()
	4.5.11 vui_intr_generate()
	4.5.12 vui_mbox_info()
	4.5.13 vui_mbox_set(), vui_mbox_remove()
	4.5.14 vui_mbox_wait()
	4.5.15 vui_mbox_control()
	Table 4 Mailbox Control operations�

	4.5.16 vui_reg_base_set(), vui_reg_base_get()
	4.5.17 vui_reg_read(), vui_reg_write()
	4.5.18 vui_reset()
	4.5.19 vui_sysfail_assert(), vui_sysfail_deassert()
	4.5.20 vui_(n)sysfail_wait(), vui_(n)sysfail_signal()
	4.5.21 vui_error_info()

	5 Device Driver Developer’s Guide
	5.1 VME Nexus Driver Configuration
	5.1.1 Master Window Properties
	5.1.2 Slave Window Property

	5.2 Device Driver Properties
	5.2.1 Non-Vectored Interrupter Handling
	5.2.2 VMEbus Mappings
	Table 5 Data width encoding

	5.3 Nexus Driver Fault Handling
	5.4 VDI Functions
	Table 6 Overview of VDI functions�
	5.4.1 Calling VDI functions
	5.4.2 vdi_arb_mode_set(), vdi_arb_mode_get()
	Table 7 Arbitration modes

	5.4.3 vdi_attach
	5.4.4 vdi_brel_set(), vdi_brel_get()
	Table 8 Bus release modes

	5.4.5 vdi_breq_set(), vdi_breq_get()
	Table 9 Bus request modes

	5.4.6 vdi_brl_set(), vdi_brl_get()
	5.4.7 vdi_dma_start()
	5.4.8 vdi_dmac_alloc_handle()
	5.4.9 vdi_error_info()
	5.4.10 vdi_event_setup(), vdi_event_release()
	Table 10 VMEbus events

	5.4.11 vdi_info()
	5.4.12 vdi_intr_acknowledge()
	5.4.13 vdi_intr_generate()
	5.4.14 vdi_map(), vdi_unmap()
	5.4.15 vdi_map_abs(), vdi_map_regspec()
	5.4.16 vdi_mbox_attach(), vdi_mbox_detach()
	5.4.17 vdi_mbox_enable(), vdi_mbox_disable()
	5.4.18 vdi_mbox_getinfo()
	5.4.19 vdi_mbox_iblock_cookie(), vdi_mbox_hilevel()
	5.4.20 vdi_reg_read(), vdi_reg_write()
	5.4.21 vdi_regslave_set(), vdi_regslave_get()
	5.4.22 vdi_rmw()
	5.4.23 vdi_reg_space
	5.4.24 vdi_smem_alloc(), vdi_smem_free()
	5.4.25 vdi_smem_map(), vdi_smem_unmap()
	Table 11 vdi_smem_req struct members�
	Table 12 vdi_smem_lim struct members

	5.4.26 vdi_smem_enable()
	5.4.27 vdi_transfer_set(), vdi_transfer_get()
	5.4.28 vdi_virq_trigger(), vdi_virq_ackwait()

	6 VME Bus Properties
	6.1 Address Spaces – VME_BT_Axx and VME_BT_CRCSR
	6.2 Data Modes – VME_BT_Dxx
	6.3 Miscellaneous Bus Properties

	7 System Messages
	7.1 Panic Messages
	7.2 Warnings
	7.3 Notices

